Odds Are, It's Wrong - Off-Topic | futures io social day trading
futures io futures trading


Odds Are, It's Wrong
Updated: Views / Replies:2,099 / 24
Created: by kbit Attachments:12

Welcome to futures io.

(If you already have an account, login at the top of the page)

futures io is the largest futures trading community on the planet, with over 90,000 members. At futures io, our goal has always been and always will be to create a friendly, positive, forward-thinking community where members can openly share and discuss everything the world of trading has to offer. The community is one of the friendliest you will find on any subject, with members going out of their way to help others. Some of the primary differences between futures io and other trading sites revolve around the standards of our community. Those standards include a code of conduct for our members, as well as extremely high standards that govern which partners we do business with, and which products or services we recommend to our members.

At futures io, our focus is on quality education. No hype, gimmicks, or secret sauce. The truth is: trading is hard. To succeed, you need to surround yourself with the right support system, educational content, and trading mentors – all of which you can find on futures io, utilizing our social trading environment.

With futures io, you can find honest trading reviews on brokers, trading rooms, indicator packages, trading strategies, and much more. Our trading review process is highly moderated to ensure that only genuine users are allowed, so you don’t need to worry about fake reviews.

We are fundamentally different than most other trading sites:
  • We are here to help. Just let us know what you need.
  • We work extremely hard to keep things positive in our community.
  • We do not tolerate rude behavior, trolling, or vendors advertising in posts.
  • We firmly believe in and encourage sharing. The holy grail is within you, we can help you find it.
  • We expect our members to participate and become a part of the community. Help yourself by helping others.

You'll need to register in order to view the content of the threads and start contributing to our community.  It's free and simple.

-- Big Mike, Site Administrator

Reply
 12  
 
Thread Tools Search this Thread
 

Odds Are, It's Wrong

  #1 (permalink)
Elite Member
Aurora, Il USA
 
Futures Experience: Advanced
Platform: TradeStation
Favorite Futures: futures
 
kbit's Avatar
 
Posts: 5,872 since Nov 2010
Thanks: 3,301 given, 3,332 received

Odds Are, It's Wrong

Ran across this elsewhere...interesting


Science fails to face the shortcomings of statistics

Please register on futures.io to view futures trading content such as post attachment(s), image(s), and screenshot(s).

P valueA P value is the probability of an observed (or more extreme) result arising only from chance. S. Goodman, adapted by A. Nandy


For better or for worse, science has long been married to mathematics. Generally it has been for the better. Especially since the days of Galileo and Newton, math has nurtured science. Rigorous mathematical methods have secured science’s fidelity to fact and conferred a timeless reliability to its findings.

During the past century, though, a mutant form of math has deflected science’s heart from the modes of calculation that had long served so faithfully. Science was seduced by statistics, the math rooted in the same principles that guarantee profits for Las Vegas casinos. Supposedly, the proper use of statistics makes relying on scientific results a safe bet. But in practice, widespread misuse of statistical methods makes science more like a crapshoot.


It’s science’s dirtiest secret: The “scientific method” of testing hypotheses by statistical analysis stands on a flimsy foundation. Statistical tests are supposed to guide scientists in judging whether an experimental result reflects some real effect or is merely a random fluke, but the standard methods mix mutually inconsistent philosophies and offer no meaningful basis for making such decisions. Even when performed correctly, statistical tests are widely misunderstood and frequently misinterpreted. As a result, countless conclusions in the scientific literature are erroneous, and tests of medical dangers or treatments are often contradictory and confusing.


Replicating a result helps establish its validity more securely, but the common tactic of combining numerous studies into one analysis, while sound in principle, is seldom conducted properly in practice.

Experts in the math of probability and statistics are well aware of these problems and have for decades expressed concern about them in major journals. Over the years, hundreds of published papers have warned that science’s love affair with statistics has spawned countless illegitimate findings. In fact, if you believe what you read in the scientific literature, you shouldn’t believe what you read in the scientific literature.


“There is increasing concern,” declared epidemiologist John Ioannidis in a highly cited 2005 paper in PLoS Medicine, “that in modern research, false findings may be the majority or even the vast majority of published research claims.”

Ioannidis claimed to prove that more than half of published findings are false, but his analysis came under fire for statistical shortcomings of its own. “It may be true, but he didn’t prove it,” says biostatistician Steven Goodman of the Johns Hopkins University School of Public Health. On the other hand, says Goodman, the basic message stands. “There are more false claims made in the medical literature than anybody appreciates,” he says. “There’s no question about that.”

Nobody contends that all of science is wrong, or that it hasn’t compiled an impressive array of truths about the natural world. Still, any single scientific study alone is quite likely to be incorrect, thanks largely to the fact that the standard statistical system for drawing conclusions is, in essence, illogical. “A lot of scientists don’t understand statistics,” says Goodman. “And they don’t understand statistics because the statistics don’t make sense.”

Statistical insignificance

Nowhere are the problems with statistics more blatant than in studies of genetic influences on disease. In 2007, for instance, researchers combing the medical literature found numerous studies linking a total of 85 genetic variants in 70 different genes to acute coronary syndrome, a cluster of heart problems. When the researchers compared genetic tests of 811 patients that had the syndrome with a group of 650 (matched for sex and age) that didn’t, only one of the suspect gene variants turned up substantially more often in those with the syndrome — a number to be expected by chance.

“Our null results provide no support for the hypothesis that any of the 85 genetic variants tested is a susceptibility factor” for the syndrome, the researchers reported in the Journal of the American Medical Association.

How could so many studies be wrong? Because their conclusions relied on “statistical significance,” a concept at the heart of the mathematical analysis of modern scientific experiments.

Statistical significance is a phrase that every science graduate student learns, but few comprehend. While its origins stretch back at least to the 19th century, the modern notion was pioneered by the mathematician Ronald A. Fisher in the 1920s. His original interest was agriculture. He sought a test of whether variation in crop yields was due to some specific intervention (say, fertilizer) or merely reflected random factors beyond experimental control.


Fisher first assumed that fertilizer caused no difference — the “no effect” or “null” hypothesis. He then calculated a number called the P value, the probability that an observed yield in a fertilized field would occur if fertilizer had no real effect. If P is less than .05 — meaning the chance of a fluke is less than 5 percent — the result should be declared “statistically significant,” Fisher arbitrarily declared, and the no effect hypothesis should be rejected, supposedly confirming that fertilizer works.


Fisher’s P value eventually became the ultimate arbiter of credibility for science results of all sorts — whether testing the health effects of pollutants, the curative powers of new drugs or the effect of genes on behavior. In various forms, testing for statistical significance pervades most of scientific and medical research to this day.

But in fact, there’s no logical basis for using a P value from a single study to draw any conclusion. If the chance of a fluke is less than 5 percent, two possible conclusions remain: There is a real effect, or the result is an improbable fluke. Fisher’s method offers no way to know which is which. On the other hand, if a study finds no statistically significant effect, that doesn’t prove anything, either. Perhaps the effect doesn’t exist, or maybe the statistical test wasn’t powerful enough to detect a small but real effect.


“That test itself is neither necessary nor sufficient for proving a scientific result,” asserts Stephen Ziliak, an economic historian at Roosevelt University in Chicago.

Soon after Fisher established his system of statistical significance, it was attacked by other mathematicians, notably Egon Pearson and Jerzy Neyman. Rather than testing a null hypothesis, they argued, it made more sense to test competing hypotheses against one another. That approach also produces a P value, which is used to gauge the likelihood of a “false positive” — concluding an effect is real when it actually isn’t. What eventually emerged was a hybrid mix of the mutually inconsistent Fisher and Neyman-Pearson approaches, which has rendered interpretations of standard statistics muddled at best and simply erroneous at worst. As a result, most scientists are confused about the meaning of a P value or how to interpret it. “It’s almost never, ever, ever stated correctly, what it means,” says Goodman.


Correctly phrased, experimental data yielding a P value of .05 means that there is only a 5 percent chance of obtaining the observed (or more extreme) result if no real effect exists (that is, if the no-difference hypothesis is correct). But many explanations mangle the subtleties in that definition. A recent popular book on issues involving science, for example, states a commonly held misperception about the meaning of statistical significance at the .05 level: “This means that it is 95 percent certain that the observed difference between groups, or sets of samples, is real and could not have arisen by chance.”


That interpretation commits an egregious logical error (technical term: “transposed conditional”): confusing the odds of getting a result (if a hypothesis is true) with the odds favoring the hypothesis if you observe that result. A well-fed dog may seldom bark, but observing the rare bark does not imply that the dog is hungry. A dog may bark 5 percent of the time even if it is well-fed all of the time. (See Box 2)


Another common error equates statistical significance to “significance” in the ordinary use of the word. Because of the way statistical formulas work, a study with a very large sample can detect “statistical significance” for a small effect that is meaningless in practical terms. A new drug may be statistically better than an old drug, but for every thousand people you treat you might get just one or two additional cures — not clinically significant. Similarly, when studies claim that a chemical causes a “significantly increased risk of cancer,” they often mean that it is just statistically significant, possibly posing only a tiny absolute increase in risk.


Statisticians perpetually caution against mistaking statistical significance for practical importance, but scientific papers commit that error often. Ziliak studied journals from various fields — psychology, medicine and economics among others — and reported frequent disregard for the distinction.

“I found that eight or nine of every 10 articles published in the leading journals make the fatal substitution” of equating statistical significance to importance, he said in an interview. Ziliak’s data are documented in the 2008 book The Cult of Statistical Significance, coauthored with Deirdre McCloskey of the University of Illinois at Chicago.

Multiplicity of mistakes

Even when “significance” is properly defined and P values are carefully calculated, statistical inference is plagued by many other problems. Chief among them is the “multiplicity” issue — the testing of many hypotheses simultaneously. When several drugs are tested at once, or a single drug is tested on several groups, chances of getting a statistically significant but false result rise rapidly. Experiments on altered gene activity in diseases may test 20,000 genes at once, for instance. Using a P value of .05, such studies could find 1,000 genes that appear to differ even if none are actually involved in the disease. Setting a higher threshold of statistical significance will eliminate some of those flukes, but only at the cost of eliminating truly changed genes from the list. In metabolic diseases such as diabetes, for example, many genes truly differ in activity, but the changes are so small that statistical tests will dismiss most as mere fluctuations. Of hundreds of genes that misbehave, standard stats might identify only one or two. Altering the threshold to nab 80 percent of the true culprits might produce a list of 13,000 genes — of which over 12,000 are actually innocent.

Recognizing these problems, some researchers now calculate a “false discovery rate” to warn of flukes disguised as real effects. And genetics researchers have begun using “genome-wide association studies” that attempt to ameliorate the multiplicity issue (SN: 6/21/08, p. 20).


Many researchers now also commonly report results with confidence intervals, similar to the margins of error reported in opinion polls. Such intervals, usually given as a range that should include the actual value with 95 percent confidence, do convey a better sense of how precise a finding is. But the 95 percent confidence calculation is based on the same math as the .05 P value and so still shares some of its problems.

Clinical trials and errors

Statistical problems also afflict the “gold standard” for medical research, the randomized, controlled clinical trials that test drugs for their ability to cure or their power to harm. Such trials assign patients at random to receive either the substance being tested or a placebo, typically a sugar pill; random selection supposedly guarantees that patients’ personal characteristics won’t bias the choice of who gets the actual treatment. But in practice, selection biases may still occur, Vance Berger and Sherri Weinstein noted in 2004 in ControlledClinical Trials. “Some of the benefits ascribed to randomization, for example that it eliminates all selection bias, can better be described as fantasy than reality,” they wrote.


Randomization also should ensure that unknown differences among individuals are mixed in roughly the same proportions in the groups being tested. But statistics do not guarantee an equal distribution any more than they prohibit 10 heads in a row when flipping a penny. With thousands of clinical trials in progress, some will not be well randomized. And DNA differs at more than a million spots in the human genetic catalog, so even in a single trial differences may not be evenly mixed. In a sufficiently large trial, unrandomized factors may balance out, if some have positive effects and some are negative. (See Box 3) Still, trial results are reported as averages that may obscure individual differences, masking beneficial or harm­ful effects and possibly leading to approval of drugs that are deadly for some and denial of effective treatment to others.


“Determining the best treatment for a particular patient is fundamentally different from determining which treatment is best on average,” physicians David Kent and Rodney Hayward wrote in American Scientist in 2007. “Reporting a single number gives the misleading impression that the treatment-effect is a property of the drug rather than of the interaction between the drug and the complex risk-benefit profile of a particular group of patients.”

Another concern is the common strategy of combining results from many trials into a single “meta-analysis,” a study of studies. In a single trial with relatively few participants, statistical tests may not detect small but real and possibly important effects. In principle, combining smaller studies to create a larger sample would allow the tests to detect such small effects. But statistical techniques for doing so are valid only if certain criteria are met. For one thing, all the studies conducted on the drug must be included — published and unpublished. And all the studies should have been performed in a similar way, using the same protocols, definitions, types of patients and doses. When combining studies with differences, it is necessary first to show that those differences would not affect the analysis, Goodman notes, but that seldom happens. “That’s not a formal part of most meta-analyses,” he says.

Meta-analyses have produced many controversial conclusions. Common claims that antidepressants work no better than placebos, for example, are based on meta-analyses that do not conform to the criteria that would confer validity. Similar problems afflicted a 2007 meta-analysis, published in the New England Journal of Medicine, that attributed increased heart attack risk to the diabetes drug Avandia. Raw data from the combined trials showed that only 55 people in 10,000 had heart attacks when using Avandia, compared with 59 people per 10,000 in comparison groups. But after a series of statistical manipulations, Avandia appeared to confer an increased risk.

In principle, a proper statistical analysis can suggest an actual risk even though the raw numbers show a benefit. But in this case the criteria justifying such statistical manipulations were not met. In some of the trials, Avandia was given along with other drugs. Sometimes the non-Avandia group got placebo pills, while in other trials that group received another drug. And there were no common definitions.


“Across the trials, there was no standard method for identifying or validating outcomes; events ... may have been missed or misclassified,” Bruce Psaty and Curt Furberg wrote in an editorial accompanying the New England Journal report. “A few events either way might have changed the findings.”

More recently, epidemiologist Charles Hennekens and biostatistician David DeMets have pointed out that combining small studies in a meta-analysis is not a good substitute for a single trial sufficiently large to test a given question. “Meta-analyses can reduce the role of chance in the interpretation but may introduce bias and confounding,” Hennekens and DeMets write in the Dec. 2 Journal of the American Medical Association. “Such results should be considered more as hypothesis formulating than as hypothesis testing.”

These concerns do not make clinical trials worthless, nor do they render science impotent. Some studies show dramatic effects that don’t require sophisticated statistics to interpret. If the P value is 0.0001 — a hundredth of a percent chance of a fluke — that is strong evidence, Goodman points out. Besides, most well-accepted science is based not on any single study, but on studies that have been confirmed by repetition. Any one result may be likely to be wrong, but confidence rises quickly if that result is independently replicated.

“Replication is vital,” says statistician Juliet Shaffer, a lecturer emeritus at the University of California, Berkeley. And in medicine, she says, the need for replication is widely recognized. “But in the social sciences and behavioral sciences, replication is not common,” she noted in San Diego in February at the annual meeting of the American Association for the Advancement of Science. “This is a sad situation.”

Bayes watch

Such sad statistical situations suggest that the marriage of science and math may be desperately in need of counseling. Perhaps it could be provided by the Rev. Thomas Bayes.

Most critics of standard statistics advocate the Bayesian approach to statistical reasoning, a methodology that derives from a theorem credited to Bayes, an 18th century English clergyman. His approach uses similar math, but requires the added twist of a “prior probability” — in essence, an informed guess about the expected probability of something in advance of the study. Often this prior probability is more than a mere guess — it could be based, for instance, on previous studies.

Bayesian math seems baffling at first, even to many scientists, but it basically just reflects the need to include previous knowledge when drawing conclusions from new observations. To infer the odds that a barking dog is hungry, for instance, it is not enough to know how often the dog barks when well-fed. You also need to know how often it eats — in order to calculate the prior probability of being hungry. Bayesian math combines a prior probability with observed data to produce an estimate of the likelihood of the hunger hypothesis. “A scientific hypothesis cannot be properly assessed solely by reference to the observational data,” but only by viewing the data in light of prior belief in the hypothesis, wrote George Diamond and Sanjay Kaul of UCLA’s School of Medicine in 2004 in the Journal of the American College of Cardiology. “Bayes’ theorem is ... a logically consistent, mathematically valid, and intuitive way to draw inferences about the hypothesis.” (See Box 4)

With the increasing availability of computer power to perform its complex calculations, the Bayesian approach has become more widely applied in medicine and other fields in recent years. In many real-life contexts, Bayesian methods do produce the best answers to important questions. In medical diagnoses, for instance, the likelihood that a test for a disease is correct depends on the prevalence of the disease in the population, a factor that Bayesian math would take into account.

But Bayesian methods introduce a confusion into the actual meaning of the mathematical concept of “probability” in the real world. Standard or “frequentist” statistics treat probabilities as objective realities; Bayesians treat probabilities as “degrees of belief” based in part on a personal assessment or subjective decision about what to include in the calculation. That’s a tough placebo to swallow for scientists wedded to the “objective” ideal of standard statistics. “Subjective prior beliefs are anathema to the frequentist, who relies instead on a series of ad hoc algorithms that maintain the facade of scientific objectivity,” Diamond and Kaul wrote.

Conflict between frequentists and Bayesians has been ongoing for two centuries. So science’s marriage to mathematics seems to entail some irreconcilable differences. Whether the future holds a fruitful reconciliation or an ugly separation may depend on forging a shared understanding of probability.

“What does probability mean in real life?” the statistician David Salsburg asked in his 2001 book The Lady Tasting Tea. “This problem is still unsolved, and ... if it remains un­solved, the whole of the statistical approach to science may come crashing down from the weight of its own inconsistencies.”
_______________________________________________________________________

BOX 1: Statistics Can Confuse
Statistical significance is not always statistically significant.
It is common practice to test the effectiveness (or dangers) of a drug by comparing it to a placebo or sham treatment that should have no effect at all. Using statistical methods to compare the results, researchers try to judge whether the real treatment’s effect was greater than the fake treatments by an amount unlikely to occur by chance.
By convention, a result expected to occur less than 5 percent of the time is considered “statistically significant.” So if Drug X outperformed a placebo by an amount that would be expected by chance only 4 percent of the time, most researchers would conclude that Drug X really works (or at least, that there is evidence favoring the conclusion that it works).

Now suppose Drug Y also outperformed the placebo, but by an amount that would be expected by chance 6 percent of the time. In that case, conventional analysis would say that such an effect lacked statistical significance and that there was insufficient evidence to conclude that Drug Y worked.
If both drugs were tested on the same disease, though, a conundrum arises. For even though Drug X appeared to work at a statistically significant level and Drug Y did not, the difference between the performance of Drug A and Drug B might very well NOT be statistically significant. Had they been tested against each other, rather than separately against placebos, there may have been no statistical evidence to suggest that one was better than the other (even if their cure rates had been precisely the same as in the separate tests).
“Comparisons of the sort, ‘X is statistically significant but Y is not,’ can be misleading,” statisticians Andrew Gelman of Columbia University and Hal Stern of the University of California, Irvine, noted in an article discussing this issue in 2006 in the American Statistician. “Students and practitioners [should] be made more aware that the difference between ‘significant’ and ‘not significant’ is not itself statistically significant.”

A similar real-life example arises in studies suggesting that children and adolescents taking antidepressants face an increased risk of suicidal thoughts or behavior. Most such studies show no statistically significant increase in such risk, but some show a small (possibly due to chance) excess of suicidal behavior in groups receiving the drug rather than a placebo. One set of such studies, for instance, found that with the antidepressant Paxil, trials recorded more than twice the rate of suicidal incidents for participants given the drug compared with those given the placebo. For another antidepressant, Prozac, trials found fewer suicidal incidents with the drug than with the placebo. So it appeared that Paxil might be more dangerous than Prozac.

But actually, the rate of suicidal incidents was higher with Prozac than with Paxil. The apparent safety advantage of Prozac was due not to the behavior of kids on the drug, but to kids on placebo — in the Paxil trials, fewer kids on placebo reported incidents than those on placebo in the Prozac trials. So the original evidence for showing a possible danger signal from Paxil but not from Prozac was based on data from people in two placebo groups, none of whom received either drug. Consequently it can be misleading to use statistical significance results alone when comparing the benefits (or dangers) of two drugs.
_______________________________________________________________________

BOX 2: The Hunger Hypothesis
A common misinterpretation of the statistician’s P value is that it measures how likely it is that a null (or “no effect”) hypothesis is correct. Actually, the P value gives the probability of observing a result if the null hypothesis is true, and there is no real effect of a treatment or difference between groups being tested. A P value of .05, for instance, means that there is only a 5 percent chance of getting the observed results if the null hypothesis is correct.
It is incorrect, however, to transpose that finding into a 95 percent probability that the null hypothesis is false. “The P value is calculated under the assumption that the null hypothesis is true,” writes biostatistician Steven Goodman. “It therefore cannot simultaneously be a probability that the null hypothesis is false.”

Consider this simplified example. Suppose a certain dog is known to bark constantly when hungry. But when well-fed, the dog barks less than 5 percent of the time. So if you assume for the null hypothesis that the dog is not hungry, the probability of observing the dog barking (given that hypothesis) is less than 5 percent. If you then actually do observe the dog barking, what is the likelihood that the null hypothesis is incorrect and the dog is in fact hungry?
Answer: That probability cannot be computed with the information given. The dog barks 100 percent of the time when hungry, and less than 5 percent of the time when not hungry. To compute the likelihood of hunger, you need to know how often the dog is fed, information not provided by the mere observation of barking.
_______________________________________________________________________
BOX 3: Randomness and Clinical Trials
Assigning patients at random to treatment and control groups is an essential feature of controlled clinical trials, but statistically that approach cannot guarantee that individual differences among patients will always be distributed equally. Experts in clinical trial analyses are aware that such incomplete randomization will leave some important differences unbalanced between experimental groups, at least some of the time.

“This is an important concern,” says biostatistician Don Berry of M.D. Anderson Cancer Center in Houston.
In an e-mail message, Berry points out that two patients who appear to be alike may respond differently to identical treatments. So statisticians attempt to incorporate patient variability into their mathematical models.
“There may be a googol of patient characteristics and it’s guaranteed that not all of them will be balanced by randomization,” Berry notes. “But some characteristics will be biased in favor of treatment A and others in favor of treatment B. They tend to even out. What is not evened out is regarded by statisticians to be ‘random error,’ and this we model explicitly.”

Understanding the individual differences affecting response to treatment is a major goal of scientists pursuing “personalized medicine,” in which therapies are tailored to each person’s particular biology. But the limits of statistical methods in drawing conclusions about subgroups of patients pose a challenge to achieving that goal.
“False-positive observations abound,” Berry acknowledges. “There are patients whose tumors melt away when given some of our newer treatments.… But just which one of the googol of characteristics of this particular tumor enabled such a thing? It’s like looking for a needle in a haystack ... or rather, looking for one special needle in a stack of other needles.”
_______________________________________________________________________
BOX 4: Bayesian Reasoning
Bayesian methods of statistical analysis stem from a paper published posthumously in 1763 by the English clergyman Thomas Bayes. In a Bayesian analysis, probability calculations require a prior value for the likelihood of an association, which is then modified after data are collected. When the prior probability isn’t known, it must be estimated, leading to criticisms that subjective guesses must often be incorporated into what ought to be an objective scientific analysis. But without such an estimate, statistics can produce grossly inaccurate conclusions.

For a simplified example, consider the use of drug tests to detect cheaters in sports. Suppose the test for steroid use among baseball players is 95 percent accurate — that is, it correctly identifies actual steroid users 95 percent of the time, and misidentifies non-users as users 5 percent of the time.
Suppose an anonymous player tests positive. What is the probability that he really is using steroids? Since the test really is accurate 95 percent of the time, the naďve answer would be that probability of guilt is 95 percent. But a Bayesian knows that such a conclusion cannot be drawn from the test alone. You would need to know some additional facts not included in this evidence. In this case, you need to know how many baseball players use steroids to begin with — that would be what a Bayesian would call the prior probability.

Now suppose, based on previous testing, that experts have established that about 5 percent of professional baseball players use steroids. Now suppose you test 400 players. How many would test positive?

• Out of the 400 players, 20 are users (5 percent) and 380 are not users.
• Of the 20 users, 19 (95 percent) would be identified correctly as users.
• Of the 380 nonusers, 19 (5 percent) would incorrectly be indicated as users.
So if you tested 400 players, 38 would test positive. Of those, 19 would be guilty users and 19 would be innocent nonusers. So if any single player’s test is positive, the chances that he really is a user are 50 percent, since an equal number of users and nonusers test positive.

Reply With Quote
The following 2 users say Thank You to kbit for this post:
 
  #2 (permalink)
Urban Samurai
Chicago IL
 
Futures Experience: Intermediate
Platform: Ninja, MT4,TOS, SC, Matlab
Broker/Data: CQG, AMP, MB, DTN
Favorite Futures: E/U, G/U
 
forrestang's Avatar
 
Posts: 1,039 since Jun 2010
Thanks: 226 given, 688 received

This may sound weird, but is there a cliff notes explanation/short paragraph of what this article is about before I read it?

Reply With Quote
 
  #3 (permalink)
Elite Member
Aurora, Il USA
 
Futures Experience: Advanced
Platform: TradeStation
Favorite Futures: futures
 
kbit's Avatar
 
Posts: 5,872 since Nov 2010
Thanks: 3,301 given, 3,332 received



forrestang View Post
This may sound weird, but is there a cliff notes explanation/short paragraph of what this article is about before I read it?


That's what I thought at first but once you start it will go fast....

Reply With Quote
 
  #4 (permalink)
Elite Member
Philly, Pa
 
Futures Experience: Master
Platform: NinjaTrader
Favorite Futures: ES, ZB
 
tigertrader's Avatar
 
Posts: 5,948 since Jul 2010
Thanks: 6,314 given, 31,870 received


forrestang View Post
This may sound weird, but is there a cliff notes explanation/short paragraph of what this article is about before I read it?


Tiger's Notes

Standard finance theory has advanced our understanding of markets immensely. But some of the theory’s
foundational assumptions are not borne out by market facts. Know the difference between theory and reality!

Reply With Quote
The following user says Thank You to tigertrader for this post:
 
  #5 (permalink)
Urban Samurai
Chicago IL
 
Futures Experience: Intermediate
Platform: Ninja, MT4,TOS, SC, Matlab
Broker/Data: CQG, AMP, MB, DTN
Favorite Futures: E/U, G/U
 
forrestang's Avatar
 
Posts: 1,039 since Jun 2010
Thanks: 226 given, 688 received


tigertrader View Post
Tiger's Notes

Standard finance theory has advanced our understanding of markets immensely. But some of the theory’s
foundational assumptions are not borne out by market facts. Know the difference between theory and reality!


Reply With Quote
 
  #6 (permalink)
Elite Member
Aurora, Il USA
 
Futures Experience: Advanced
Platform: TradeStation
Favorite Futures: futures
 
kbit's Avatar
 
Posts: 5,872 since Nov 2010
Thanks: 3,301 given, 3,332 received


tigertrader View Post
Tiger's Notes

Standard finance theory has advanced our understanding of markets immensely. But some of the theory’s
foundational assumptions are not borne out by market facts. Know the difference between theory and reality!


Exactly TT, That was my larger point (of posting it here at futures.io (formerly BMT)). The article itself is eye opening about medical/health studies but also leads to questioning other theories (in other fields ) we take as fact just because someone else says it's so.


Last edited by kbit; November 6th, 2011 at 03:37 PM.
Reply With Quote
The following user says Thank You to kbit for this post:
 
  #7 (permalink)
Elite Member
Aurora, Il USA
 
Futures Experience: Advanced
Platform: TradeStation
Favorite Futures: futures
 
kbit's Avatar
 
Posts: 5,872 since Nov 2010
Thanks: 3,301 given, 3,332 received

Darwin: The reluctant mathematician

Darwin: The Reluctant Mathematician - Science News_

Despite disliking mathematics, the great biologist inadvertently advanced statistics



Please register on futures.io to view futures trading content such as post attachment(s), image(s), and screenshot(s).

COMMON TOADFLAXDarwin by chance noticed that the seeds from cross-fertilized Common Toadflax plants grew into bigger, stronger plants than the plants from self-fertilized seeds. The observation spurred further experiments.



For all his other talents, Charles Darwin wasn’t much of a mathematician. In his autobiography, he writes that he studied math as a young man but also remembers that “it was repugnant to me.” He dismissed complex mathematical arguments and wrote to a friend, “I have no faith in anything short of actual measurement and the Rule of Three,” where the “Rule of Three” was an extremely simple mathematical calculation.
But history played a joke on the great biologist: It made him a contributor to the development of statistics.
It was the wildflower common toadflax that got the whole thing started. Darwin grew the plant for experiments, and he carefully cross-fertilized some flowers and self-fertilized others. When he grew the seeds, he found that the hybrids were bigger and stronger than the purebreds.
He was astonished. Although he had always suspected that inbreeding was bad for plants, he had never suspected it could have a significant effect within a single generation.
Please register on futures.io to view futures trading content such as post attachment(s), image(s), and screenshot(s).

FRANCIS GALTONDarwin’s cousin invented the concept of standard deviation, a way of quantifying the variation in a set of numbers.Sir Francis Galton F.R.S: 1822-1911


So he repeated the experiment with seven other kinds of plants, including corn. He had a clever, and at that time novel, idea. Since slight differences in soil or light or amount of water could affect the growth rates, he planted the seeds in pairs — one cross-pollinated seed and one self-pollinated seed in each pot. Then he let them grow and measured their heights.

Sure enough, on average, the hybrids were taller. Among his 30 corn plants, for example, the purebreds were only 84 percent as tall as the hybrids. But Darwin was savvy enough not to simply trust the average heights of so few plants. “I may premise,” Darwin wrote, “that if we took by chance a dozen or score of men belonging to two nations and measured them, it would I presume be very rash to form any judgments from such small numbers on their average heights.” Could it be, he wondered, that the height differences in the plants were just random variation?
Darwin noted, though, that men’s heights vary a lot within a single country, whereas the heights of his plants didn’t. His result might be more meaningful, but he wanted to be able to quantify how meaningful.
Doing that, however, required Darwin’s hated mathematics.
Please register on futures.io to view futures trading content such as post attachment(s), image(s), and screenshot(s).

R.A. FISHERIn an effort to unite Darwin’s theory with Mendelian genetics, Fisher created much of the foundation for modern statistics. He put together the final pieces to answer Darwin’s puzzle over the plant growth experiments.


So he turned to his cousin, Francis Galton, who just happened to be a leader in the emerging field of statistics. Galton had recently invented the standard deviation, a way of quantifying the amount of random variability in a set of numbers.
But Galton wasn’t all that much use. He could calculate the standard deviation, but he couldn’t use that number to tell Darwin how likely it was that the height difference wasn’t just random. Furthermore, he was pretty sure it was too few plants to tell. “I doubt,” he wrote, “after making many trials, whether it is possible to derive useful conclusions from these few observations. We ought to have measurement of at least fifty plants in each case, in order to be in a position to deduce fair results.”

And there the matter rested, in frustrating uncertainty, for 40 years.
Resolving the impasse, it turned out, required some beer. The Guinness brewing company hired a young University of Oxford graduate, William Sealy Gosset, to develop statistical techniques to cheaply monitor the quality of its beer. The method Gosset developed was so powerful that it transformed statistics and continues to be a workhorse to this day.
Ironically, though, Gosset wasn’t allowed to publish the method under his own name, because Guinness wanted to keep it a secret that statistics could help make better beer. But publish it he did, under the pseudonym “Student.” The technique has hence become known as the “Student’s t-test.”

The Student’s t-test did just what Galton didn’t know how to do: Given the standard deviation Galton had calculated, it told how likely it was that the difference in the heights between the hybrids and the purebreds were just random. The answer? The chance was about one in 20. By statistical standards, that’s significant, but barely so.
It took another 10 years and the intervention of another statistical genius for the next breakthrough on the problem. As a college student, Sir Ronald Aylmer Fisher learned about Gregor Mendel’s work in genetics and Darwin’s work in evolution, but the theory connecting the two hadn’t yet been developed. Fisher set out to create the statistical foundation to make the connection possible. Darwin’s experiment with hybrids was just the kind of problem Fisher needed to be able to solve.

He noticed something that Galton had missed: Galton had ignored Darwin’s clever method of pairing the plants. He had calculated the standard deviation of the plants as a single, large group.
Fisher repeated the analysis but calculated the standard deviation of the difference in heights between the pairs of plants in each pot. Suddenly, instead of a one in 20 chance that the result didn’t mean anything, he calculated about a one in 10,000 chance. In other words, it was nearly certain that the hybrids really did grow taller than the purebreds.
Fisher noted that the Student’s t-test had one possible flaw: It assumed that the plant heights would vary in a predictable way (according to a normal distribution, to be precise). Just in case that assumption was wrong, he devised another way of analyzing the data and confirmed the result. “He was very clever in the way he did it,” says Susan Holmes of Stanford University. Only in the 1980s did statisticians realize the full potential of Fisher’s method and develop it into the subject of “exact testing.”

Fisher’s analysis was only possible because Darwin had designed his experiment so well. In fact, Fisher was often frustrated with the quality of other people’s experiments. “To call in the statistician after the experiment is done,” he said, “may be no more than asking him to perform a postmortem examination: he may be able to say what the experiment died of.”

David Brillinger, a statistician at the University of California, Berkeley, says that Darwin’s method of pairing is now common practice. “Darwin was a leader in a subfield of statistics called experimental design,” he says. “He knew how to design a good experiment, but what to do with the numbers was something else.”
Darwin himself came around eventually in his attitude toward mathematics. While he wrote in his autobiography of his youthful distaste for math, he also wrote that he wished he had learned the basic principles of math, “for men thus endowed seem to have an extra sense"


Last edited by kbit; November 7th, 2011 at 09:18 PM.
Reply With Quote
 
  #8 (permalink)
Elite Member
Honolulu, Hawaii
 
Futures Experience: Intermediate
Platform: NinjaTrader
Broker/Data: ATC/TT, AMP/Zen-Fire, AMP/CQG
Favorite Futures: TF
 
bluemele's Avatar
 
Posts: 2,547 since Jun 2010
Thanks: 3,806 given, 2,826 received


kbit View Post
Exactly TT, That was my larger point (of posting it here at futures.io (formerly BMT)). The article itself is eye opening about medical/health studies but also leads to questioning other theories (in other fields ) we take as fact just because someone else says it's so.

There are no 'facts' or 'real'. We are in an ever evolving world of unknowns. OK, now I am going to go take a hit of acid.

Reply With Quote
The following user says Thank You to bluemele for this post:
 
  #9 (permalink)
Elite Member
windsor, Ontario
 
Futures Experience: Advanced
Platform: Ninja,
Broker/Data: DTN iqfeed
Favorite Futures: Es, 6E
 
Posts: 138 since Oct 2009
Thanks: 40 given, 123 received

Scien-tism is just another religion and a newcomer on the block as well. It has its high priests and vigorously patrols and defends its turf - truth be damned. Were it not for its obsessive compulsive behaviour towards mechanistic reductionism it would never have stumbed on its own undoing - Heisenberg and all his evil step children opened the mythical Pandora's box and now reality is up for grabs or in the lexicon of programmers- open source code. (I am probably a little too esoteric for this site)

Reply With Quote
 
  #10 (permalink)
Elite Member
Philly, Pa
 
Futures Experience: Master
Platform: NinjaTrader
Favorite Futures: ES, ZB
 
tigertrader's Avatar
 
Posts: 5,948 since Jul 2010
Thanks: 6,314 given, 31,870 received



drago1 View Post
Scien-tism is just another religion and a newcomer on the block as well. It has its high priests and vigorously patrols and defends its turf - truth be damned. Were it not for its obsessive compulsive behaviour towards mechanistic reductionism it would never have stumbed on its own undoing - Heisenberg and all his evil step children opened the mythical Pandora's box and now reality is up for grabs or in the lexicon of programmers- open source code. (I am probably a little too esoteric for this site)

...at least there's no evidence of dementia pugilistica

Reply With Quote
The following user says Thank You to tigertrader for this post:

Reply



futures io > > > Odds Are, It's Wrong

Thread Tools Search this Thread
Search this Thread:

Advanced Search



Upcoming Webinars and Events (4:30PM ET unless noted)

Linda Bradford Raschke: Reading The Tape

Elite only

Adam Grimes: TBA

Elite only

NinjaTrader: TBA

January

Ran Aroussi: TBA

Elite only
     

Similar Threads
Thread Thread Starter Forum Replies Last Post
As CNYJPY Jumps To QE2 Levels, What Odds Are Markets Implying Of A China Hard Landing Quick Summary News and Current Events 0 October 31st, 2011 03:40 AM
Investors See Odds Against Bull Market Making 2012 Quick Summary News and Current Events 0 August 30th, 2011 06:00 PM
Where white man went wrong kbit Jokes 0 May 29th, 2011 11:56 AM
What's wrong with my SUM logic? gordo NinjaTrader Programming 1 July 18th, 2010 09:04 PM
Pop Quiz: Roulette odds Big Mike Off-Topic 4 April 23rd, 2010 05:40 PM


All times are GMT -4. The time now is 08:39 PM.

Copyright © 2017 by futures io, s.a., Av Ricardo J. Alfaro, Century Tower, Panama, +507 833-9432, info@futures.io
All information is for educational use only and is not investment advice.
There is a substantial risk of loss in trading commodity futures, stocks, options and foreign exchange products. Past performance is not indicative of future results.
no new posts
Page generated 2017-12-11 in 0.99 seconds with 20 queries on phoenix via your IP 54.83.122.227