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A1l. Risks, Losses and Risk Factors

We concentrate on the following sources of risk.

e Market Risk - risk associated with fluctuations in value of traded
assets.

e Credit Risk - risk associated with uncertainty that debtors will
honour their financial obligations

e Operational Risk - risk associated with possibility of human error,
I'T failure, dishonesty, natural disaster etc.

This is a non-exhaustive list; other sources of risk such as liquidity
risk possible.
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Modelling Financial Risks

To model risk we use language of probability theory. Risks are
represented by random variables mapping unforeseen future states of
the world into values representing profits and losses.

The risks which interest us are aggregate risks. In general we
consider a portfolio which might be

e a collection of stocks and bonds:

e a book of derivatives:

e a collection of risky loans;

e a financial institution’s overall position in risky assets.
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Portfolio Values and Losses

Consider a portfolio and let V; denote its value at time t; we assume
this random variable is observable at time ¢.

Suppose we look at risk from perspective of time ¢t and we consider
the time period [t,t 4+ 1]. The value V; 1 at the end of the time
period is unknown to us.

The distribution of (V11 — V4) is known as the profit-and-loss or
P&L distribution. We denote the loss by L1 = — (Vi1 — V;). By
this convention, losses will be positive numbers and profits negative.

We refer to the distribution of L, as the loss distribution.
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Introducing Risk Factors

The Value V; of the portfolio/position will be modelled as a function
of time and a set of d underlying risk factors. We write

Vi = f(ta Zt) (1)

where Zy = (Z.1,...,Z.q4) is the risk factor vector. This
representation of portfolio value is known as a mapping. Examples
of typical risk factors:

e (logarithmic) prices of financial assets
e yields

e (logarithmic) exchange rates
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Risk Factor Changes
We define the time series of risk factor changes by
Xt .= Zt — Zt—l-

Typically, historical risk factor time series are available and it is of
Interest to relate the changes in these underlying risk factors to the
changes in portfolio value.

We have
Lt—l—l — _(‘/H-l o V;)
= —(f(t+1,Zssq) — f(t,Zy))
= —(ft+1,Z:+Xeg1) — f(t,Zy)) (2)
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The Loss Operator

Since the risk factor values Z; are known at time ¢ the loss L;,1 is
determined by the risk factor changes X, 1.

Given realisation z; of Z;, the loss operator at time t is defined as

Iy (x) == = (f(E+ 1,2e +x) — f(t,2¢)), (3)

so that
L1 = l(Xes1)-

From the perspective of time ¢ the loss distribution of L;q is
determined by the multivariate distribution of X;. ;.

But which distribution exactly? Conditional distribution of L;. 1
given history up to and including time ¢ or unconditional distribution
under assumption that (X;) form stationary time series?
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A2. Example: Portfolio of Stocks

Consider d stocks; let a; denote number of shares in stock ¢ at time
t and let S; ; denote price.

The risk factors: following standard convention we take logarithmic
prices as risk factors Z; ; = log St ;,1 <1 < d.

The risk factor changes: in this case these are
X¢y1.i = log S¢q1,; — log St i, which correspond to the so-called
log-returns of the stock.

The Mapping (1)

d d
Vi = Z St = Z et (4)
i=1 i=1
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BMW
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02.01.89 02.01.90 02.01.91 02.01.92 02.01.93 02.01.949 02.01.95 02.01.96
Time

Siemens

5 60 70 80

02.01.89 02.01.90 02.01.91 02.01.92 02.01.93 02.01.94 02.01.95 02.01.96
Time

BMW and Siemens Data: 1972 days to 23.07.96.
Respective prices on evening 23.07.96: 844.00 and 76.9. Consider
portfolio in ratio 1:10 on that evening.
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BMW and Siemens Log Return Data: 1972 days to 23.07.96.
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Example Continued
The Loss (2)

d d
Lyt = — (Y et =) aze”ti

d
= —Vi ) wy (eXri— 1) (5)

1=1

where wy ; = «;S; ;/V; is relative weight of stock ¢ at time ¢.
The loss operator (3)

l[t :—sztz — 1)

Numeric Example: [;;(x) = — (844(e" — 1) + 769(e™ — 1))
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A3. Conditional or Unconditional Loss Distribution?

This issue is related to the time series properties of (X):cn, the
series of risk factor changes. If we assume that X;, X;_1,... are iid
random vectors, the issue does not arise. But, if we assume that
they form a strictly stationary multivariate time series then we must
differentiate between conditional and unconditional.

Many standard accounts of risk management fail to make the
distinction between the two.

If we cannot assume that risk factor changes form a stationary time
series for at least some window of time extending from the present
back into intermediate past, then any statistical analysis of loss
distribution is difficult.
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The Conditional Problem

Let F; represent the history of the risk factors up to the present.

More formally F; is sigma algebra generated by past and present risk
factor changes (X)s<¢.

In the conditional problem we are interested in the distribution of
Lit1 = ly(Xiq1) given Fy, i.e. the conditional (or predictive) loss
distribution for the next time interval given the history of risk factor
developments up to present.

This problem forces us to model the dynamics of the risk factor time
series and to be concerned in particular with predicting volatility.
This seems the most suitable approach to market risk.
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The Unconditional Problem

In the unconditional problem we are interested in the distribution of
Liy1 = I (X) when X is a generic vector of risk factor changes
with the same distribution Fx as X;, X;_1,....

When we neglect the modelling of dynamics we inevitably take this
view. Particularly when the time interval is large, it may make sense
to do this. Unconditional approach also typical in credit risk.

More Formally
Conditional loss distribution: distribution of I[;(+) under Fix, . |7,

Unconditional loss distribution: distribution of I;;(-) under Fx.
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A4. Risk Measures Based on Loss Distributions

Risk measures attempt to quantify the riskiness of a portfolio. The
most popular risk measures like VaR describe the right tail of the
loss distribution of L;,1 (or the left tail of the P&L).

To address this question we put aside the question of whether to
look at conditional or unconditional loss distribution and assume
that this has been decided.

Denote the distribution function of the loss L := L;1 by F, so that
P(L <zx) = Fr(x).
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VaR and Expected Shortfall

e Primary risk measure: Value at Risk defined as
VaRa = ¢a(f1) = F (@), (6)
I.e. the a-quantile of F7..

e Alternative risk measure: Expected shortfall defined as
ESe = E (L | L > VaR,) , (7)

I.e. the average loss when VaR is exceeded. ES, gives information
about frequency and size of large losses.
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VaR in Visual Terms
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Losses and Profits

Profit & Loss Distribution (P&L)
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VaR - badly defined!

The VaR bible is the book by Philippe Jorion.| ].
The following “definition” is very common:

“VaR is the mazimum expected loss of a portfolio over a given time
horizon with a certain confidence level.”

It Is however mathematically meaningless and potentially misleading.
In no sense is VaR a maximum loss!

We can lose more, sometimes much more, depending on the
heaviness of the tail of the loss distribution.

(©2005 (Embrechts, Frey, McNeil) 21



Ab5. Linearisation of Loss

Recall the general formula (2) for the loss L; 1 in time period
t,t 4+ 1]. If the mapping f is differentiable we may use the following
first order approximation for the loss

d
L?—f—l — (ft(tv Zt) =+ Z fzz(tv Zt)Xt—l—l,'i> ) (8)

i=1
e « f,. Is partial derivative of mapping with respect to risk factor i

f; is partial derivative of mapping with respect to time

e The term fi(t,Z;) only appears when mapping explicitly features
time (derivative portfolios) and is sometimes neglected.
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Linearised Loss Operator

Recall the loss operator (3) which applies at time ¢. We can
obviously also define a linearised loss operator

d
I(x) == [ filtze) + Y fa(tz)mi | (9)
1=1

where notation is as in previous slide and z; is realisation of Z;.

Linearisation is convenient because linear functions of the risk factor
changes may be easier to handle analytically. It is crucial to the
variance-covariance method. The quality of approximation is best if
we are measuring risk over a short time horizon and if portfolio value
Is almost linear in risk factor changes.
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Stock Portfolio Example

Here there is no explicit time dependence in the mapping (4). The
partial derivatives with respect to risk factors are

fzi(t7 z;) = et 1 <4 < d,

and hence the linearised loss (8) is

oZ
t+1 E Qe “Xt+1z:—‘/25 Wi i Xt41,45

1=1

where w; ; = ;Sy.;/V; is relative weight of stock ¢ at time ¢.
This formula may be compared with (5).

Numeric Example: l[t]( x) = — (844x1 + 769x5)

(©2005 (Embrechts, Frey, McNeil)
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A6. Example: European Call Option

Consider portfolio consisting of one standard European call on a
non-dividend paying stock S with maturity T and exercise price K.

The Black-Scholes value of this asset at time t is CP>(t, S;,r, o)
where

CB5(t,8:r,0) = S®(dy) — Ke " T~V (dy),
® is standard normal df, r represents risk-free interest rate, o the
volatility of underlying stock, and where

~ log(S/K) + (r+02/2)(T —t) o —
dl— O_m and dg—dl O'\/T L.

While in BS model, it is assumed that interest rates and volatilities
are constant, in reality they tend to fluctuate over time; they should
be added to our set of risk factors.
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The Issue of Time Scale

Rather than measuring time in units of the time horizon (as we have
implicitly done in most of this chapter) it is more common when
derivatives are involved to measure time in years (as in the Black
Scholes formula).

If A is the length of the time horizon measured in years
(i.,e. A =1/260 if time horizon is one day) then we have

V;g — f(t, Zt) = OBS(tA, St, T, O't).
When linearising we have to recall that

ft(ta Zt) — CtBS(tA, St;Tt, O't)A.
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Example Summarised
The risk factors: Z; = (log Sy, 1, 0¢)".

The risk factor changes:
X = (log(st/st—l)a re —Tt—1,0t — Ut—l)/-

The mapping (1)
‘/;5 — f(t, Zt) — CBS(tA, St;’I“t,O't),

The loss/loss operator could be calculated from (2). For derivative
positions it is quite common to calculate linearised loss.

The linearised loss (8)

3
Lﬁu = — (ft(t7 Z) + Zfzi(ta Zt)Xt—I—l,i> :

1=1

(©2005 (Embrechts, Frey, McNeil)
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The Greeks
It is more common to write the linearised loss as
L, =—(CPPA+CE°Si X111+ CP° X120+ CP7 X1 3),
in terms of the derivatives of the BS formula.

e CB5 is known as the delta of the option.
o CB5 is the vega.
o CB5 is the rho.

o CB% is the theta.

(©2005 (Embrechts, Frey, McNeil)
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B. Standard Statistical Methods for Market Risk

. Variance-Covariance Method
Historical Simulation Method
Monte Carlo Simulation Method
An Example

Improving the Statistical Toolkit

(©2005 (Embrechts, Frey, McNeil)

30



B1l. Variance-Covariance Method
Further Assumptions

e We assume X;,; has a multivariate normal distribution (either
unconditionally or conditionally).

e We assume that the linearized loss in terms of risk factors is a
sufficiently accurate approximation of the loss. We consider the
problem of estimating the distribution of

LA — Z[At] (Xt+1)7
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Theory Behind Method

Assume X; 11 ~ Ng(p,X2).

Assume the linearized loss operator (9) has been determined and
write this for convenience as

l[t] <c+2wzxz> —(c+ w'x).

The Ioss distribution is approximated by the distribution of

Now since X1 ~ Ng(p, X)) = w'Xyi1 ~ N(w'p, w'Xw), we have

LA ~ N(—c—w'p,w'Sw).
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Implementing the Method

1. The constant terms in ¢ and w are calculated

2. The mean vector u and covariance matrix X are estimated from
data X;_,+1,...,X; to give estimates 1 and X.

3. Inference about the loss distribution is made using distribution
N(—c—w'pu,wiw)

4. Estimates of the risk measures VaR, and E S, are calculated from
the estimayed distribution of L*.
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Estimating Risk Measures

e Value-at-Risk. VaR,, is estimated by

VaR, = —c— Wi + Vw'Sw - ).

e Expected Shortfall. ES,, is estimated by

- _ 1
ES,=—-—c—wp+Vwiw- gb((f_ (&)).

84

Remark. Forarv Y ~ N(0,1) it can be shown that
EY Y > (a)) =¢(@ Ha))/(1 — o)
where ¢ is standard normal density and ® the df.

(©2005 (Embrechts, Frey, McNeil)
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Pros and Cons, Extensions

e Pros. In contrast to the methods that follow, variance-covariance
offers analytical solution with no simulation.

e Cons. Linearization may be crude approximation. Assumption of
normality may seriously underestimate tail of loss distribution.

e Extensions. Instead of assuming normal risk factors, the method
could be easily adapted to use multivariate Student t risk factors or
multivariate hyperbolic risk factors, without sacrificing tractibility.
(Method works for all elliptical distributions.)
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B2. Historical Simulation Method

The ldea

Instead of estimating the distribution of L = I;j(X;41) under some
explicit parametric model for X;. 1, estimate distribution of the loss
operator under empirical distribution of data X;_,,41,..., X4.

The Method

1. Construct the historical simulation data

(Ly=1y(Xy) : s=t—n+1,...,t} (10)
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2. Make inference about loss distribution and risk measures using
these historically simulated data: Lt SIS P Lt.

(©2005 (Embrechts, Frey, McNeil) 37



Historical Simulation Data: Percentage Losses

10

02.01.89 02.01.90 02.01.91 02.01.92 02.01.93 02.01.94 02.01.95 02.01.96
Time
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Inference about loss distribution

There are various possibilities in a simulation approach:

e Use empirical quantile estimation to estimate the VaR directly from
the simulated data. But what about precision?

e Fit a parametric univariate distribution to Zt_nﬂ,...,zt and
calculate risk measures from this distribution.
But which distribution, and will it model the tail?

e Use the techniques of extreme value theory to estimate the tail of
the loss distribution and related risk measures.

(©2005 (Embrechts, Frey, McNeil) 39



Theoretical Justification

If X¢_na1,...,X; are iid or more generally stationary, convergence
of empirical distribution to true distribution is ensured by suitable

version of law of large numbers.

Pros and Cons

e Pros. Easy to implement. No statistical estimation of the

distribution of X necessary.

e Cons. It may be difficult to collect sufficient quantities of relevant,
synchronized data for all risk factors. Historical data may not

contain examples of extreme scenarios.
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B3. The Monte Carlo Method

ldea

We estimate the distribution of L = [[;)(X¢11) under some explicit
parametric model for X4 1.

In contrast to the variance-covariance approach we do not
necessarily make the problem analytically tractible by linearizing the
loss and making an assumption of normality for the risk factors.

Instead we make inference about L using Monte Carlo methods,
which involves simulation of new risk factor data.
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The Method

1. With the help of the historical risk factor data X;_,11,..., Xy

calibrate a suitable statistical model for risk factor changes and

simulate m new data 5{&)1, s ,}N(?g;nf from this model.

2. anstruct the Monte Carlo data
{Li — l[t](Xg_gz) 1 = 1, c o ,m}.

3. Make inference anout loss distribution and risk measures using the

simulated data Ll,... Lm. We have similar possibilities as for
historical simulation.
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Pros and Cons

e Pros. Very general. No restriction in our choice of distribution for
Xt_|_1.

e Cons. Can be very time consuming if loss operator is difficult to
evaluate, which depends on size and complexity of portfolio.

Note that MC approach does not address the problem of
determining the distribution of X; 1.
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B4. An Example With BMW-SIEMENS Data

\

Xdata <- DAX[(5147:6146),c("BMW","SIEMENS")]
> X <- seriesData(Xdata)

+*+

Set stock prices and number of units
alpha <- cbind(1,10)
Sprice <- cbind(844,76.9)

vV Vv

#1. Implement variance-covariance analysis

weights <- alphax*Sprice

muhat <- apply(X,2,mean)

Sigmahat <- var(X)

meanloss <- -sum(weights*muhat)

varloss <- weights %%*J, Sigmahat %}, t(weights)

VaR99 <- meanloss + sqrt(varloss)*qnorm(0.99)

ES99 <- meanloss +sqrt(varloss)*dnorm(gqnorm(0.99))/0.01

V V V V V V V

#2. Implement a historical simulation analysis

> loss.operator <- function(x,weights){
—apply((exp(x)-1)*matrix(weights,nrow=dim(x) [1] ,ncol=length(weights) ,byrow=T),1,sum)}
> hsdata <- loss.operator(X,weights)

> VaR99.hs <- quantile(hsdata,0.99)

(©2005 (Embrechts, Frey, McNeil)
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> ES99.hs <- mean(hsdatal[hsdata > VaR99.hs])

(©2005 (Embrechts, Frey, McNeil)
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Example Continued

#3a. Implement a Monte Carlo simulation analysis with Gaussian risk factors

> X.new <- rmnorm(10000,Sigma=Sigmahat,mu=muhat)
> mcdata <- loss.operator(X.new,weights)

> VaR99.mc <- quantile(mcdata,0.99)

> ES99.mc <- mean(mcdatal[mcdata > VaR99.mc])

#3b. Implement alternative Monte Carlo simulation analysis with t risk factors

model <- fit.t(X, nu=NA)

X.new <- rmt (10000, df=model$nu, Sigma=model$Sigma, mu=model$mu)
mcdatat <- loss.operator(X.new,weights)

VaR99.mct <- quantile(mcdatat,0.99)

ES99.mct <- mean(mcdatat[mcdatat > VaR99.mct])

V V V V V

#Draw pictures

hist (hsdata,nclass=20,prob=T)

abline (v=c(VaR99,ES99))

abline (v=c(VaR99.hs,ES99.hs),col=2)
abline(v=c(VaR99.mc,ES99.mc),col=3)
abline(v=c(VaR99.mct,ES99.mct),col=4)

V V V VvV V
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Comparison of Risk Measure Estimates

Monte Carlo (Gaussian)

Variance Covariance
Historical Simulation
—— Monte Carlo ()

oeo0'o S20°0 (oFAo 0] STO'O OTO'O SOO0'0O oo
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B5. Improving the Statistical Toolkit

Questions we will examine in the remainder of this workshop include
the following.

Multivariate Models

Are there alternatives to the multivariate normal distribution for
modelling changes in several risk factors?

We will expand our stock of multivariate models to include
multivariate normal mixture models and copula models. These will
allow a more realistic description of joint extreme risk factor changes.
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Improving the Statistical Toolkit |l

Monte Carlo Techniques
How can we simulate dependent risk factor changes?

We will look in particular at ways of simulating multivariate risk
factors in non-Gaussian models.

Conditional Risk Measurement

How can we implement a genuinely conditional calculation of risk
measures that takes the dynamics of risk factors into consideration?

We will consider methodology for modelling financial time series and
predicting volatility, particularly using GARCH models.
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On risk management:

e [Crouhy et al., 2001]

e [Jorion, 2001]
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C. Fundamentals of Modelling Dependent Risks

Motivation: Multivariate Risk Factor Data
Basics of Multivariate Statistics

The Multivariate Normal Distribution

Standard Estimators of Location and Dispersion
Tests of Multivariate Normality

Dimension Reduction and Factor Models
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C1. Motivation: Multivariate Risk Factor Data

Assume we have data on risk factor changes X;,...,X,,. These
might be daily (log) returns in context of market risk or longer
interval returns in credit risk (e.g. monthly/yearly asset value
returns). What are appropriate multivariate models?

e Distributional Models. In unconditional approach to risk modelling
we require appropriate multivariate distributions, which are
calibrated under assumption data come from stationary time series.

e Dynamic Models. In conditional approach we use multivariate time
series models that allow us to make risk forecasts.

This module concerns the first issue. A motivating example shows
the kind of data features that particularly interest us.
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te Daily Return Data
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BMW and Siemens: 2000 daily (log) returns 1985-1993.
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Three Extreme Days
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Those extreme days: 19.10.1987, 16.10.1989, 19.08.1991
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The Philadelphia Inguirer
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History

New York, 19th October 1987

Berlin Wall

The Kremlin, 19th August 1991
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C2. Multivariate Statistics: Basics

Let X = (Xq,...,Xy)" be a d-dimensional random vector
representing risks of various kinds. Possible interpretations:

e returns on d financial instruments (market risk)
e asset value returns for d companies (credit risk)
e results for d lines of business (risk integration)

An individual risk X; has marginal df F;(x) = P(X; < z).
A random vector of risks has joint df

F(x)=F(x1,...,2q) = P(X1 < z1,..., Xq < xg)
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or joint survivor function

F(x)=F(x1,...,2q) = P(X] > x1,..

(©2005 (Embrechts, Frey, McNeil)
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Multivariate Models

If we fix F' (or F') we specify a multivariate model and implicitly
describe marginal behaviour and dependence structure of the risks.

Calculating Marginal Distributions
Fi(zx;) =P (X, <x;) = F(o0,...,00,%;,00,...,00),

l.e. limit as arguments tend to infinity.

In a similar way higher dimensional marginal distributions can be
calculated for other subsets of {X71,..., X4}.

Independence

Xq,...,X4 are said to be mutually independent if

d
F(x) = H Fi(x;), VxeRY

1=1
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Densities of Multivariate Distributions

Most, but not all, of the models we consider can also be described
by joint densities f(x) = f(x1,...,2q), which are related to the
joint df by

I Ld
F(xl,...,a;d):/ / flug,...,ug)duy . ..dug.
— 00 — 00
Existence of a joint density implies existence of marginal densities

fi,..., fa (but not vice versa).

Equivalent Condition for Independence

d
f(x) =] fi(z:), vxeR?
i=1
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C3. Multivariate Normal (Gaussian) Distribution

This distribution can be defined by its density

f(X) _ (27_‘_)—d/2’2’—1/2 exp {_(X B “)/22_1()( B H)} 7

where p € R? and ¥ € R%*? is a positive definite matrix.

e If X has density f then E(X) = u and cov (X) = 3, so that pu
and X are the mean vector and covariance matrix respectively. A

standard notation is X ~ Ng(u, ).

e Clearly, the components of X are mutually independent if and
only if 3 is diagonal. For example, X ~ N4(0,I) if and only if

X1,...,Xgareiid N(0,1).
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Bivariate Standard Normals
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Properties of Multivariate Normal Distribution

e [he marginal distributions are univariate normal.

e Linear combinations a’X = a1 X + - - - a4X4 are univariate normal
with distribution a’X ~ N(a'u,a’>a).

e Conditional distributions are multivariate normal.

e The sum of squares (X — p)’Y"1(X — u) ~ x5 (chi-squared).

Simulation.
1. Perform a Cholesky decomposition > = AA’
2. Simulate iid standard normal variates Z = (Z1,...,Z3)’

3. Set X = u+ AZ.
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C4. Estimators of Location and Dispersion

Assumptions. We have data X,...,X,, which are either iid or at
least serially uncorrelated from a distribution with mean vector p,
finite covariance matrix Y. and correlation matrix P.

Standard method-of-moments estimators of p and X are the sample
mean vector X and the sample covariance matrix S defined by

1 1 _ _
X==-) X, S= X, — X)(X; — X).
3 PDBEIER VLSRR

These are unbiased estimators.

The sample correlation matrix has (%, j)th element given by
R;; = Sij/\/SiiS;j;. Defining D to be a d-dimensional diagonal
matrix with ¢th diagonal element S,}i/2 we may write R = D~1SD~1.
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Properties of the Estimators?

Further properties of the estimators X, S and R depend on the true
multivariate distribution of observations. They are not necessarily
the best estimators of i, > and P in all situations, a point that is
often forgotten in financial risk management where they are
routinely used.

If our data are iid multivariate normal Ng(u, ) then X and

(n —1)S/n are the maximum likelihood estimators (MLEs) of the
mean vector u and covariance matrix .. Their behaviour as
estimators is well understood and statistical inference concerning the
model parameters is relatively unproblematic.

However, certainly at short time intervals such as daily data, the
multivariate normal is not a good description of financial risk factor
returns and other estimators of ; and > may be better.
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C5. Testing for Multivariate Normality

If data are to be multivariate normal then margins must be
univariate normal. This can be assessed graphically with QQplots or
tested formally with tests like Jarque-Bera or Anderson-Darling.

However, normality of the margins is not sufficient — we must test
joint normality. To this end we calculate

(X =) S (Xi—fa), i=1,...,n}.

These should form (approximately) a sample from a x3—distribution,
and this can be assessed with a QQplot or tested numerically with,
for example, Kolmogorov-Smirnov.

(QQplots compare empirical quantiles with theoretical quantiles of
reference distribution.)
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Testing Multivariate Normality: Normal Data
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Deficiencies of Multivariate Normal for Risk Factors

e Tails of univariate margins are very thin and generate too few
extreme values.

e Simultaneous large values in several margins relatively infrequent.
Model cannot capture phenomenon of joint extreme moves in
several risk factors.

e Very strong symmetry (known as elliptical symmetry). Reality
suggests more skewness present.
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C6. Dimension Reduction and Factor Models

Idea: Explain the variability in a d-dimensional vector X in terms of
a smaller set of common factors.

Definition: X follows a p-factor model if
X =a+ BF + ¢, (11)

(i) F = (F1,...,F,)" is random vector of factors with p < d,

(i) e = (e1,...,€4)" is random vector of idiosyncratic error terms,
which are uncorrelated and mean zero,

(iii) B € R¥*? is a matrix of constant factor loadings and a € R¢ a

vector of constants,
(iv) cov(F,e) = E((F — E(F))e’) = 0.
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Remarks on Theory of Factor Models

e Factor model (11) implies that covariance matrix % = cov(X)
satisfies > = BQB’ + ¥, where 2 = cov(F) and ¥ = cov(e)
(diagonal matrix).

e Factors can always be transformed so that they are orthogonal:
> = BB '+ V. (12)
e Conversely, if (12) holds for covariance matrix > of random vector
X, then X follows factor model (11) for some a, F and .

e If, moreover, X is Gaussian then F and € may be taken to
be independent Gaussian vectors, so that & has independent
components.
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Factor Models in Practice

We have multivariate financial return data Xy, ..., X,, which are
assumed to follow (11). Two situations to be distinguished:

1. Appropriate factor data F1,...,F,, are also observed, for example
returns on relevant indices. We have a multivariate regression
problem; parameters (a and B) can be estimated by multivariate
least squares.

2. Factor data are not directly observed. We assume data Xq,..., X,
identically distributed and calibrate factor model by one of two
strategies: statistical factor analysis - we first estimate B and
U from (12) and use these to reconstruct Fq,...,F,; principal
components - we fabricate Fq, ..., F,, by PCA and estimate B and
a by regression.
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On general multivariate statistics:

o | | (general multivariate statistics)
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D. Normal Mixture Models and Elliptical Models

Normal Variance Mixtures
Normal Mean-Variance Mixtures
Generalized Hyperbolic Distributions

Elliptical Distributions
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D1. Multivariate Normal Mixture Distributions

Multivariate Normal Variance-Mixtures

Let Z ~ N4(0,3) and let W be an independent, positive, scalar
random variable. Let o be any deterministic vector of constants.
The vector X given by

X =pu+VvWZ (13)

Is said to have a multivariate normal variance-mixture distribution.

Easy calculations give E(X) = p and cov(X) = E(W)X.
Correlation matrices of X and Z are identical: corr(X) = corr(Z).

Multivariate normal variance mixtures provide the most useful
examples of so-called elliptical distributions.
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Examples of Multivariate Normal Variance-Mixtures

2 point mixture

ky with probability p,
W{lWI PToRabliity ky > 0, ks > 0,k £ ko.

ko with probability 1 — p

Could be used to model two regimes - ordinary and extreme.
Multivariate t

W has an inverse gamma distribution, W ~ Ig(v/2,v/2). This gives
multivariate t with v degrees of freedom. Equivalently v/W ~ 2.

Symmetric generalised hyperbolic

W has a GIG (generalised inverse Gaussian) distribution.
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The Multivariate t Distribution

This has density

(v+d)
(x—pw)'E" (x = u)) O

vV

f(x) =Fks,a (1 +

where p € R4 ¥ e R*d jg 4 positive definite matrix,v is the
degrees of freedom and kyx , 4 is @ normalizing constant.

o If X has density f then E(X) = pu and cov (X) = -%53, so that
e and X are the mean vector and dispersion matrix respectively.
For finite variances/correlations v > 2. Notation: X ~ t4(v, i, ).

e If X is diagonal the components of X are uncorrelated. They are
not independent.

e [he multivariate t distribution has heavy tails.
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Bivariate Normal and t
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Fitted Normal and ¢; Distributions
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Simulating Normal-Mixture Distributions

It is straightforward to simulate normal mixture models. We only
have to simulate a Gaussian random vector and an independent
radial random variable. Simulation of Gaussian vector in all standard

texts.

Example: ¢ distribution

To simulate a vector X with distribution ¢4(v, p, >) we would
simulate Z ~ Ng(0,%) and V ~ x2;

we would then set W = v/V and X = u + VWZ.

To simulate generalized hyperbolic distributions we are required to
simulate a radial variate with the GIG distribution. For an algorithm
see [ ]; see also work of | ].
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D2. Multivariate Normal Mean-Variance Mixtures

We can generalise the mixture construction as follows:
X=p+Wvy+ VWL, (14)

where 1, v € R? and the positive rv W is again independent of the
Gaussian random vector Z ~ Ng4(0,3).

This gives us a larger class of distributions, but in general they are
no longer elliptical and corr(X) # corr(Z). The parameter vector ~
controls the degree of skewness and v = 0 places us back in the
(elliptical) variance-mixture family.
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Moments of Mean-Variance Mixtures

Since X | W ~ Ny(pu + W=, WY) it follows that

EX) = E(EX|W))=p+ EW)y, (15)
cov(X) = FE(cov(X |W))+cov(E(X|W))
= E(W)X 4 var(W)~+/, (16)

provided W has finite variance. We observe from (15) and (16) that
the parameters p and X are not in general the mean vector and
covariance matrix of X.

Note that a finite covariance matrix requires var(W) < oo whereas
the variance mixtures only require E(W) < co.

Main example. When W has a GIG distribution we get generalized
hyperbolic family.
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Generalised Inverse Gaussian (GIG) Distribution

The random variable X has a generalised inverse Gaussian (GIG),
written X ~ N7 (), x, %), if its density is

B X MVx)r as 1 1
— KA (V/x0) > Lexp (—— (X.CIZ + wx)> , x>0,

2
where K, denotes a modified Bessel function of the third kind with
index A and the parameters satisfy x > 0,9 > 0 if A < 0;

x>0, >0ifA=0and x >0, >0 1if A > 0. For more on this
Bessel function see | ].

flz)

The GIG density actually contains the gamma and inverse gamma
densities as special limiting cases, corresponding to x = 0 and ¢ = 0
respectively. Thus, when v = 0 and @ = 0 the mixture distribution
in (14) is multivariate t.
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D3. Generalized Hyperbolic Distributions

The generalised hyperbolic density f(x)

Ky g (VO+ QG i, D)@ + 'S 1) ) exp ((x — p)'S 1)

<
(VX + Qe D@+ vE )

where
Qx; 1, %) = (x — )T (x — p)
and the normalising constant is

—A

(G [S8

_ (Wx9) MW+ 'Sy
(2m)2[S2 K> (VXD
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Notes on Generalized Hyperbolic

e Notation: X ~ GHg(\, x, ¥, @, 22, 7).

e The «class is closed wunder linear operations (including
marginalization). If X ~ GHg(\, x, %, i, >,7) and we consider
Y = BX + b where B € R¥* and b € R* then Y ~
GHi(A, x, %, By + b, BXB’, BYy). A version of the variance-
covariance method may be based on this family.

e The distribution may be fitted to data using the EM algorithm.
Note that there is an identifiability problem (too many parameters)
that is usually solved by setting || = 1. | ]
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Special Cases

If A = 1 we get a multivariate distribution whose univariate margins
are one-dimensional hyperbolic distributions, a model widely used
In univariate analyses of financial return data.

If A\ = —1/2 then the distribution is known as a normal inverse
Gaussian (NIG) distribution. This model has also been used in
univariate analyses of return data; it's functional form is similar to
the hyperbolic with a slightly heavier tail.

If A > 0 and y = 0 we get a limiting case of the distribution known
variously as a generalised Laplace, Bessel function or variance
gamma distribution.

If \=—v/2, x =v and ¢ = 0 we get an asymmetric or skewed ¢
distribution.
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D4. Elliptical distributions

A random vector (Y71,...,Yy) is spherical if its distribution is
invariant under rotations, i.e. for all U € R%*4 with

UU=U0U"= 1,

Y iUy,
A random vector (X1,...,Xy) is called elliptical if it is an affine
transform of a spherical random vector (Y7,...,Y%),
X = AY + b,

A € R¥*XE 1 e Re,

A normal variance mixture in (13) with g =0 and X = [ is
spherical; any normal variance mixture is elliptical.
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Properties of Elliptical Distributions

e The density of an elliptical distribution is constant on ellipsoids.

e Many of the nice properties of the multivariate normal are preserved.
In particular, all linear combinations a1 X7 + ... + a4X4 are of the
same type.

e All marginal distributions are of the same type.

e Linear correlation matrices successfully summarise dependence,
since mean vector, covariance matrix and the distribution type
of the marginals determine the joint distribution uniquely.
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Elliptical Distributions and Risk Management

Consider set of linear portfolios of elliptical risks
P={Z=Y_ 1 \Xi| i\ =1}

e VaR is a coherent risk measure in this world. It is monotonic,
positive homogeneous (P1), translation preserving (P2) and, most
importantly, sub-additive
VaR.(Z14+725) < VaR(Z1)+VaR,(Z3), for Z1,Z5 € P,a > 0.5.

e Among all portfolios with the same expected return, the portfolio
minimizing VaR, or any other risk measure p satisfying
PL o(\Z) = Xo(Z), A >0,
P2 o(Z +a)=0(Z)+a, a €R,
Is the Markowitz variance minimizing portfolio.
Risk of portfolio takes the form o(Z) = E(Z) + const - sd(Z).
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E. Modelling Financial Time Series

Stylized Facts of Empirical Finance

Basics of Time Series Analysis

Classical Time Series Modelling with ARMA

Modelling Financial Time Series with ARCH and GARCH

Fitting GARCH Models to Financial Data
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E1l. Stylized facts of Financial Time Series

Consider discrete (e.g. daily) observations S; of some asset price.

Let X; = (log S; —log S;_1) ~ (S;_1 — S;) /Si_1, be the log
returns.

A realistic model should reflect stylized facts of return series:

e Returns not iid but correlation low

e Absolute returns highly correlated

e \Volatility appears to change randomly with time
e Returns are leptokurtic or heavy—tailed

e Extremes appear in clusters
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Stylized Facts: Correlation, Heavy Tails

Correlograms of raw S&P data and absolute data,
and QQ-plot of raw data

Series : spdata Series : abs(spdata)

aaaaaaaaaaaaaaaaaaaaaaaaa
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Towards Models for Financial Time Series

We seek theoretical stochastic process models that can mimic these
stylized facts. In particular, we require models that generate volatility
clustering, since most of the other observations flow from this.

Econometricians have proposed a number of useful models including
the ARCH/GARCH class.

We will concentrate on these (although there are alternatives such
as discrete time stochastic volatility models).

To understand ARCH and GARCH it helps to briefly consider the
classical family of ARMA models.
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E2. Basics of Time Series Analysis

Stationarity

A time series (X})iez is strictly stationary if

d
(ti e 7th) — (Xt1+h7 e 7th+h)

forall t1,...,t,, h € Z.

In particular this means that X; has the same distribution for all
t € Z, and this distribution is known as the stationary distribution
(or marginal distribution).
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Moments of a Stationary Time Series

For a strictly stationary time series E(X;) and var(X;) must be
constant for all £.
Moreover the autocovariance function defined by

(L, 8) 1= cov( Xy, Xs) = E(X; — E(X))(Xs — BE(X,))).

must satisfy y(¢,s) = y(t + h,s + h) for all ¢,s, h € Z, which implies
that covariance only depends on the separation in time of the
observations |t — s|, also known as the lag.

A time series for which the first two moments are constant over time
(and finite) and for which this condition holds, is known as
covariance stationary, or second-order stationary.
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The Autocorrelation Function

Rewrite the autocovariance function of a stationary time series as
v(h) :=~v(h,0) = cov(Xp, Xg), Vh € Z.

Note, moreover that v(0) = var(X,), Vt.

The autocorrelation function is given by
p(h) := p(Xpn, Xo), VheZ.

Clearly p(h) = ~(h)/~(0), in particular p(0) = 1.

We refer to p(h),h = 1,2,3... as autocorrelations or serial
correlations.
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Time Domain and Frequency Domain

If we study dependence structure of a time series by analysing the
autocorrelations we analyse (X;) in the time domain.

There is an alternative approach based on Fourier analysis of the
series, known as analysis in the frequency domain.

Most analysis of financial time series is done in the time domain,
and we will restrict our attention to this.

An important instrument in the time domain is the correlogram,
which gives empirical estimates of serial correlations.
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The Correlogram

Given time series data Xq,...,X,, we calculate the sample
autocovariances

1
n

i Xt+h — Y) where 7 = i Xt/n

t=1

The sample autocorrelations are given by

p(h) :=~(h)/~5(0), h=0,1,2,....

The correlogram is the plot {(h,p(h)), h=0,1,2,...}.

For many standard underlying processes, it can be shown that the
p(h) are consistent, and asymptotically normal estimators of the

autocorrelations p(h). (For very heavy-tailed processes, this theory
does however break down.)
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White Noise Processes

( These are processes with no appreciable dependence structure in
the time domain.

A white noise process is a covariance stationary time series process
whose autocorrelation function is given by

IO(O) =1, p(h) =0, h #0.

That is, a process showing no serial correlation.

A strict white noise process is simply a process of iid random
variables.

Not every white noise is a strict white noise. Plain ARCH and
GARCH processes are in fact white noise processes!
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E3. Classical ARMA Processes

Classical ARMA (autoregressive moving average) processes are
constructed from white noise.

Let (e¢)¢cz be a white noise process which has mean zero and finite

2

variance o:.

The (g¢) form the innovations that drive the ARMA process.
Moving Average Process

These are defined as linear sums of the noise (e;).
(X;) follows a MA(q) process if

q
Xt = Z (92'675_@‘ + Et.
1=1

(©2005 (Embrechts, Frey, McNeil) 102



Autoregressive Process

These are defined by stochastic difference equations, or recurrence
relations.

(X¢)tez follows a AR(p) process if for every ¢ the rv X, satisfies
p
Xy = Z ¢jXt—j + €t
j=1

where (e¢):cz is a white noise.

In order for these equations to define a covariance stationary causal

process (depending only on past innovations) the coefficients ¢
must obey certain conditions.
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ARMA Process

Autoregressive and moving average features can be combined to
form ARMA processes.

(X¢)iez follows an ARMA(p,q) process if for every t the rv X,
satisfies

p q
X = Z Q;Xi—j + Z Oict—i + €4, (17)
j=1 i=1
where (&¢)¢cz is a white noise.

Again, there are conditions on the ¢, coefficients for these equations
to define a covariance stationary causal process.

The autocorrelation functions of ARMA processes show a number of
typical patterns, including exponential decay and damped sinusoidal
decay.
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ARMA Examples
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E4. Modelling Return Series with ARCH/GARCH

Let (Z;):cy follow a strict white noise process with mean zero and
variance one.

ARCH and GARCH processes (X;);c7 take general form
Xt =014, te€ L, (18)

where o, the volatility, is a function of the history up to time ¢t — 1
represented by F;_1. Z; is assumed independent of F;_;.

Mathematically, o; is F;_1-measurable, where F;_1 is the filtration
generated by (X;)s<¢_1, and therefore var(X, | F;_1) = o7.

Volatility is the conditional standard deviation of the process.
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ARCH and GARCH Processes

(X¢) follows an ARCH(p) process if, for all ¢,
p
O't2 = Qg T+ Z(XthQ_j, with Qj > 0.
j=1

Intuition: volatility influenced by large observations in recent past.

(X;) follows a GARCH(p,q) process (generalised ARCH) if, for all ¢,

p q
07 = ag + Z osztQ_j + Zﬂkaf_k, with o, B > 0. (19)
j=1 k=1

Intuition: more persistence is built into the volatility.
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Stationarity and Autocorrelations

The condition for the GARCH equations to define a covariance
stationary process with finite variance is that

ARCH and GARCH are technically white noise processes since

”}/(h) — COV(Xt,Xt+h) — E(O’t+th+hO'tZt)
= E(Zt+h)E(O't_|_hO'tZt) = 0.
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Absolute and Squared GARCH Processes

Although (X}) is an uncorrelated process, it can be shown that the
processes (X?) and (|X;|) possess profound serial dependence.

In fact (X?) can be shown to have a kind of ARMA-like structure.

A GARCH(1,1) model is like an ARMA(1,1) model for (X?).
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GARCH Simulated Example

08 10 12 14 16 1§ 20

o 200 400 s00 800 1000 o 200 400 s00 800 1000

10

ACF
ACF

|
|
|
- = |
|
|
|

00
00

L L .,'.I PR _ hTrﬁTjTTﬂTTﬁTTVTﬁTfﬁ+-

T
o 5 10 15 20 25 30 o 5 10 15 20 25 30
Lag Lag

Simulated realisation of series (upper left), volatility (upper right)
together with correlograms of raw (lower left) and squared data.
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Hybrid ARMA /GARCH Processes

Although changes in volatility are the most obvious feature of
financial return series, there is sometimes some evidence of serial
correlation at small lags. This can be modelled by

Xt = [+ &y
Et+ = O'tZt, (20)

where 1; follows an ARMA specification, o; follows a GARCH
specification, and (Z;) is (0,1) strict white noise.

1+ and o; are respectively the conditional mean and standard
deviation of X; given history to time ¢t — 1; they satisfy
E(X; | Fi_1) = ps and var(X; | Fi_1) = o7,
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A Simple Effective Model: AR(1)+GARCH(1,1)

For our purposes the following model will suffice.

Mt — C = ¢(Xt—1 _ C)7

o7 = apton (X1 — 1)’ + Bopy, (21)

with ag, a1, >0, a3 + 8 <1 and |¢| < 1 for a stationary model
with finite variance.

This model is a reasonable fit for many daily financial return series,

particularly under the assumption that the driving innovations are
heavier-tailed than normal.
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E5. Fitting GARCH Models to Financial Data

There are a number of possible methods, but the most common is
maximum likelihood (ML), which is also a standard method of
fitting ARMA processes to data.

Possibilities:

e Assume (Z;) are standard iid normal innovations and estimate
GARCH parameters (a; and ;) by ML.

e Assume (Z;) are (scaled) t, innovations and estimate GARCH
parameters plus v by ML.

e Make no distributional assumptions and estimate GARCH
parameters by quasi maximum likelihood (QML). (Effectively uses
Gaussian ML but calculates standard errors differently.)
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Example: Returns on Microsoft Share Price 93-01

Mean Equation: DJ30stock ~ ar(1)
Conditional Variance Equation:

~

Conditional Distribution: t with estimated parameter 7.923343 and standard error 1.090603

Estimated Coefficients:

garch(1l, 1)

Value Std.Error t value Pr(cltl|)

C 1.247e-03 4.493e-04 2.
AR(1) -8.076e-03 2.261e-02 -0.

A 1.231e-05 4.580e-06

N

GARCH(1) 9.188e-01 1.769e-02 51

Normality Test:
Jarque-Bera P-value Shapiro-Wilk
451.5 0 0.9872

7748 2.787e-03
3572 3.605e-01

.6877 3.628e-03
ARCH(1) b5.876e-02 1.258e-02 4.
.9315 0.000e+00

6710 1.599e-06

P-value
0.2192

Ljung-Box test for standardized residuals:

Statistic P-value Chi~2-d.f.
11.12 0.5184 12

Ljung-Box test for squared standardized residuals:

Statistic P-value Chi~2-d.f.
10.24 0.5948 12
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GARCH Analysis
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GARCH Analysis Il
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GARCH Analysis IV
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F. The Dynamic Approach to Market Risk

1. The Conditional Problem
2. Backtesting

3. Longer Time Horizons
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F1. Conditional Risk Measurement Revisited

In the dynamic or conditional problem interest centres on the
distribution of the loss in the next time period L;y1 = I(Xy41),
given F; = 0 {(Xs)s<t}, the history of risk factor developments up

to present.

Risk Measures based on the loss distribution, like VaR (6) and
expected shortfall (7), are applied to the distribution of L;,1 | F;.
We denote them as follows.

t —
VaRy = Frp 5 (cv).

ES,, = E(Lit1]| Liy1 > VaR,, 7).

This problem forces us to consider the dynamics of the risk factor
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change time series and not just their long-term distribution.
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The Single Risk Factor Problem

Suppose we consider an investment in a single stock or stock index,
which has value V; at time £. In terms of the log return for the next
time period the loss follows (5) and is

Lt—l—l — —‘/t (eXt—i—l — 1) ~J _%Xt—l—l — L?é—l—l
We assume the time series (X;) follows a model with structure
Xt = pg + 042y, g, 00 € Fyq, (22)

where (Z;) are iid innovations with mean zero and unit variance.
ARMA-GARCH models (20) and (21) provide example. This implies

L7y = —Vipirrr — Viorg1 Zesa. (23)
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Dynamic Risk Measures in 1-Risk-Factor Model

In this case the predictive distribution of X;1 (or of —L£,) is of
the same type as the innovation distribution Fz of the (Z;).

x —_
Fixiia(@) = P (Xes < 2| 53) = Fy (21141,
Ot+1

Risk measures applied to conditional distribution of LﬁH are:

VaR!, = —Vipsi1 + Vioii1qa(F2) (24)
ESZ = —Vipsy1 +Vior (1 E(Z | Z > qo(F2)).

They are linear transformations of the risk measures applied to the
iInnovation distribution F'z.
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Risk Measure Estimation

Now assume we have data X;_,,11,...,X:. We require a model

that allows us to calculate:

1. Estimates/predictions o;r7 and p;1 of the volatility and
conditional mean for the next time period;

2. Estimates q,(Fz) and Ega(Z) of risk measures applied to
innovation distribution

In model with Gaussian innovations step (2) is immediate;
go(F7) = @ Ha) and ES,(Z) = ¢(®1(a))/(1 — ). In other
models measures may depend on estimated parameters of innovation

distribution.
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Volatility and Conditional Mean Predictions

e GARCH Modelling. Fit ARMA-GARCH model (21) and use

Uiy1 = ¢+ o(Xy —¢)
Oi, = Qo+ a1 (X —fig)? +ﬂ10t7

where ¢, ¢, ag, a1, 81 are parameter estimates and u; and o; are
also obtained from model.

e EWMA (RiskMetrics). We set psy1 = 0 for simplicity and use
a simple recurswe scheme for volatility whereby o7, ; = (1 —
M) XZ + X\o?, where \ is exponential smoothing parameter chosen
by modeller (for example A = 0.94).
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Risk Measures for the Scaled t Distribution

Write G, and g, for the df and density of standard univariate t.
Suppose, for v > 2, that Z has a scaled t distribution so that
Vv/(v—2)Z ~t,. then

()

—G, (a (25)

ngl_a (1GNP

When scaled ¢ is used as innovation distribution in time series model
v is generally estimated. ¢, (Fz) and ES,(Z) are obtained by
subtituting this estimate.
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Dynamic Risk Measure Estimates (99%)
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Daily losses for 1 unit invested in Dow Jones index in year 2000.
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Ad Hoc Approach to Multiple Risk Factors

Recall the definition of the historical simulation data in (10).

{ZS = ly(Xs) : s=t—n+1,...,t}. Suppose we fitted a
univariate time series model to these data and used this to calculate
conditional VaRs and expected shortfalls for L; .

This can be thought of as attempting to estimate distribution of
L¢41 given the information represented by G; = 0{(Ls)s<¢}. This is
a subset of the information represented by F; = 0{(Xs)s<t}-

In theory we have redefined the conditional problem and are
calculating conditional estimates based on less information. In
practice the estimates may often be quite good.

Genuinely multivariate methods discussed in Multivariate Time
Series module.
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F2. Backtesting

“VaR! denote the indicator for a violation of the

Let It — 1{LA
t+1

theoretical VaR of linearized loss on day ¢ + 1.

It follows from (23) and (24) that

Iy = 1{Zt+1>Qa(FZ)} ™~ Be(l B a);

moreover [; and I, are independent for ¢ # s, since Z;11 and Z4
are independent, so theoretical violation indicators are iid

Bernoulli(1 — «).

Of course we do not know VaR!, and will in practice look at the

' } We expect these to be

LA >VaR,,

violation indicators ft =1
(1,
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roughly iid Bernoulli(1 — ).
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Violations of 99% VaR Estimates
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Violation Count Tables and Binomial Tests

Quantile Method S&P DAX

n="7414 n = 5146
95% Expected 371 257
05%  GARCH (Normal) | 384 (0.25) 238 (0.11)
05% GARCH (t) 404 (0.04) 253 (0.41)
99% Expected 74 51
99% GARCH (Normal) | 104 (0.00) 74 (0.00)
99% GARCH (t) 78 (0.34) 61 (0.11)

Expected and observed violation counts for VaR estimates for two
market indices obtained from GARCH modelling (Gaussian and
scaled t innovations). Methods use last 1000 data values for each
forecast. p-value for binomial test given in brackets.
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Expected Shortfall to Quantile Ratios

In general we have ES! /VaR!, ~ E(Z | Z > qu(F2)) /qa(F7) and
It is interesting to look at the typical magnitude of such ratios.

a 0.95 0.99 0995 ¢ —1
ty 15 139 137 1.33
Normal | 1.25 1.15 1.12  1.00

Conclusion.

If GARCH with Gaussian innovations has a tendency to
underestimate VaR at higher levels (o > 99%), then it will have an
even more pronounced tendency to underestimate expected shortfall.

Heavy-tailed innovation distributions required to estimate ESfX.
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F3. Risk Measure Estimates for /h-Period Loss

Suppose we require conditional VaR and ES estimates for the loss
distribution over a 1-week, 2-week, 1-month or other period. There
are two possible strategies:

e Base analysis on loss data for appropriate period length, e.g. non-
overlapping weekly or fortnightly losses. Advantage: estimates
obtained immediately from model. Disadvantage: reduction in
quantity of data.

e Infer risk measure estimates for longer period from a model fitted
to higher frequency returns, typically daily. Advantage: more data.
Disadvantage: scaling behaviour of reasonable models not well
understood.
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The Single Risk Factor Problem

Let (S;) and (X;) denote daily asset value and log-return process
respectively. The A period log-return at time ¢ is given by

S
Xt(—}fi)h — lOg ( g:h> — Xt_|_1 + o4 Xt—|—h'

If our position in asset has value V; at time ¢ our loss is

Lii)h = —V}(exp(Xt(i)h — 1) and we wish to estimate risk measures

VaRbh = F o),
: [ngl—)hlft_ (a)

esy” = B (LYY, | L), > VaRy, 7).
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A Monte Carlo Approach

1. Fit model to daily returns X;_,,11,..., X4.

2. By simulating independent innovations construct many future paths
Xit1yeor Xidh.

3. Calculate X( )h and LEJF)h for each path.

4. Estimate risk measures by empirical quantile and shortfall

estimation techniques applied to simulated values of Lgi)h.

— 1
Alternative Method. Estimate one-step risk measures VaRR,, and

¢
ES,,. Scale these estimates by square-root—of—time v/h to obtain
estimates for h-day period (valid for iid normally distributed returns).
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Some Empirical Results

S&P DAX BMW
h = 10; length of test 7405 5136 5136
0.95 Quantile
Expected 370 257 257
Simulation Method (h-day) 403 249 231
Square—root—of—time 623 318 315
0.99 Quantile
Expected 74 51 51
Simulation Method (h-day) 85 43 53
Square-root-of-time 206 83 70

Conclusion. Square root of time scaling does not seem

sophisticated enough! Note that formal statistical testing difficult

because of overlapping returns.
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6.

G. Multivariate Financial Time Series

Stylized Facts of Multivariate Risk Factors

Basics of Multivariate Time Series
General Multivariate GARCH Model
Constant Conditional Correlation GARCH
The DVEC GARCH Model

Risk Management with Multivariate GARCH
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G1. Multivariate Stylized Facts

We have observed a number of univariate stylized facts. These may
be augmented by the following multivariate observations.

e Return series show little cross correlation, except at lag 0.

e Cross-correlogram of absolute or squared returns show profound
cross-correlations.

e “Correlations appear to be higher in stress periods than normal
periods”

e Extreme moves of many financial assets are synchronous.
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Cross-Correlogram of BMW-Siemens Data
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Cross-Correlogram of Absolute BMW-Siemens Data
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G2. Basics of Multivariate Time Series

Stationarity. (Recall Univariate Case)

A multivariate time series (X¢):cyz is strictly stationary if

d
( :517'“7 :Sn):

forall t1,...,t,,h € Z.

( :51+h7 R :Sn+h)

In particular this means that X; has the same multivariate
distribution for all £ € Z, and this distribution is known as the
stationary distribution (or marginal distribution).
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Moments of a Stationary Multivariate Time Series

For a strictly stationary multivariate time series F/(X;) and cov(Xjy)
must be constant for all ¢.
Moreover the covariance matrix function defined by

T(t,s) := cov(Xy, X,) = B ((X; — BE(X)(X, — B(X,))) .

must satisfy I'(¢,s) =T'(t + h,s+ h) for all t,s,h € Z

A multivariate time series for which the first two moments are
constant over time (and finite) and for which this condition holds, is
known as covariance stationary, or second-order stationary.

(Recall univariate case)
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Covariance Matrix Function of Stationary T.S.

We may rewrite the covariance matrix function of a stationary time
series as

['(h) :=T(h,0) = cov(Xy, Xp), Vh e Z.

Properties.

1. T'(0) = cov(Xy), Vt.

2. '(h) =T(=h)

3. In general T'(h) is not symmetric so that I'(h) # I'(—h)

4. T'(h); ; is autocovariance function of (X¢;)tez
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Correlation Matrix Function of Stationary T.S.

The correlation matrix function is given by
P(h) := corr(Xy, Xg), VheZ.

In terms of the autocovariance matrix function we may write

P(h) = A7T'(h)A~1, where A = diag(1/T'(0)11,...,/T(0)aq).

(Recall univariate case)

P(h);; and P(h);; need not be the same. Often we have

P(h)w — ,O(Xt+h,7;7Xt,j) ~ O, Vh > O,
P(h)ﬂ = )O(Xt,z'th—f—h,j) 7£ O, some h > O,

and series 1 is then said to lead series j.
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The Cross Correlogram

Given time series data X1,...,X,, we calculate the sample
covariance matrix function

1
n

i Xt+h — X)/ where X = i Xt/n

t=1

Hence we can construct sample correlation matrix function P(h).

The cross correlogram is a matrix of plots. The (7, 7) plot is
{(h,P(h);;) : h=0,1,2,...}. (Recall univariate case)

Remarks.

1. Diagonal pictures are correlograms for individual series.

2. In S-Plus the (4, 5) plot is {(—h, P(h);;) : h=0,1,2,...} when
1> 7.
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Cross Correlogram (DJ30, SMI, Nikkei Returns)
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Multivariate White Noise Processes

A multivariate white noise process (WN) is a covariance stationary
multivariate time series process whose correlation matrix function is
given by

P(O)=P, P(h)=0, h#0,

where P is any positive-definite correlation matrix.

A multivariate strict white noise process (SWN) is simply a process
of iid random vectors.

(Recall univariate case)
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G3. General Multivariate GARCH Model

Recall univariate GARCH-type model in (18).

The process (X¢):cz is a multivariate GARCH model if it is strictly
stationary and satisfies equations of the form

X, =%""Z7, teZ, (27)

o Zi/z is the Cholesky factor of a positive-definite matrix >; which
is measurable with respect to F;—1 = 0{(Xs)s<t—1};

e (Z;)tcz is multivariate SWN with mean zero and cov(Z;) = Ig;
(typically multivariate normal or (scaled) ¢ innovations are used).
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Conditional and Unconditional Moments

A covariance-stationary process satisfies
E(X, | Fio1) = E(2,%2Z, | Fiy) = 5,2 E(Z) = 0,

(martingale difference property) so process is a multivariate white
noise process. Moreover >3; is the conditional covariance matrix since

cov(Xy | Fior) = BE(X, X, | Fo) = 82 EB(Z,Z0) 57 = 5.

The unconditional moments are F(X;) = 0 and

Y =cov(Xy) = F (cov(Xy | Fio1)) +cov(BE (X | Fio1)) = E(X).
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Conditional Correlation

We have the decomposition
Et = AtPtAt, At = diag(am, c. 7O-t,d)7

where the diagonal matrix A; is the volatility matrix and contains
the volatilities for the component series (X¢ i)tez, k=1,...,d.
P, is the conditional correlation matrix and has elements given by

Py i = Et,z'j/((ft,z'gt,j)-

To build parametric models we parameterize the dependence of > ;
(or of Ay and P;) on the past values of the process in such a way
that X; always remains symmetric and positive definite.

(©2005 (Embrechts, Frey, McNeil) 153



Multivariate ARMA-GARCH Models

As before (recall univariate case) we can consider general models of
the form

X, = p, +5,°Z,

where p, 1s a F;_1-measurable conditional mean vector.

We might choose to parametrise it using a vector autoregressive
(VAR) or vector ARMA (VARMA) model.

Example: VAR(1)

py=p+ PXy

where all eigenvalues of ® are less than one in absolute value.

(©2005 (Embrechts, Frey, McNeil) 154



G4. The Constant Conditional Correlation Model

A useful model is the CCC-GARCH model, proposed by Bollerslev
(1990), where it is assumed that

e Conditional correlation is constant over time: P, = P for all ¢

e Volatilities follow standard univariate GARCH models.
For example, in a CCC-GARCH(1,1) model

2 7 v 2 )
Op; = Qg+t Xy 1, + 501; 1.

Y

e The Z; are SWN(0, I4) with normal or scaled t distribution.
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Fitting the CCC-model

e Full maximum likelihood estimation, using the sample correlation
matrix (or robust alternative) as starting value.

e Estimation of P by sample correlation matrix, and estimation of
remaining parameters by ML.

e Simple two-stage procedure relying on the observation that in
CCC model X; = A;Y; where the sequence (Y¢):cz is iid with
covariance matrix P .

Stage 1. Fit univariate GARCH models to each component to
determine dynamics of A;. Form residuals ?t = ﬁt_lXt.

Stage 2. Estimate distribution of Yy, either by fitting parametric
model (e.g. t-distribution) to residuals or by “historical simulation”

using residuals.
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CCC-GARCH Analysis of BMW-Siemens Data

Mean Equation: dataforgarch ~ 1

Conditional Variance Equation:
Conditional Distribution:

Estimated Coefficients:

Pr(>|t])
.774e-01
.359e-01
.542e-05
.904e-04
.269e-07
.570e-06
.000e+00
.000e+00

C(1)

C(2)

AC1, 1)

A2, 2)
ARCH(1; 1, 1)
ARCH(1; 2, 2)
GARCH(1; 1, 1)
GARCH(1; 2, 2)

© O© P> P> W o N+

Value

.425e-04
.158e-04
.904e-06
.492e-06
.597e-02
.577e-02
.121e-01
.264e-01

~ ccc(1, 1)
t with estimated parameter 4.671218 and standard error 0.3307812

Std.Error t value

i S R = = o

.413e-04
.964e-04
.802e-06
.013e-06
.887e-03
.001e-02
.667e-02 54
.515e-02 61

> 01w w e O

.5907
.0990
.8324
.4459
L1727
.5714
L7174
.1655

Estimated Conditional Constant Correlation

BMW SIEMENS
BMW 1.0000 0.6818

STIEMENS 0.6818

1.0000
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CCC-GARCH(1,1) Analysis
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CCC-GARCH(1,1) Analysis Ii
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CCC-GARCH(1,1) Analysis IlI

QQ-Plot of Standardized Residuals
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G5. The DVEC Family

There have been many proposals for models that allow dynamically
changing correlations; we choose one of the more successful ones.

In a DVEC model the conditional covariance matrix satisfies

p q
Zt :AO+ZAiOXt—i ;_,L-—FZBjOZt_j,
1=1 71=1

where Ay, A;, B; € R*4 are symmetric parameter matrices.
Compare with (19).
Remarks

1. The symbol o denotes componentwise multiplication of matrices.
2. First order models generally good enough.
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Guaranteeing Positive Definiteness

To ensure positive definiteness of >; we can require all parameter
matrices to be p.d. although not all software does this.

A parameterisation that ensures positive definiteness sets
A= APAYY i=0,1,...,p, B;=B’B/* j=1,...q

where the Ag/Q and B;/Q are lower-triangular matrices.
A Simpler Model (DVEC.vec.vec)

The number of parameters can be further reduced by setting

Ag= AYV2AV? A —a@al, i=1,....,p, B;=b:b, j=1,...
0 0 ) J J)

1/27 . :
where AO/ is lower triangular and the a; and b; are vectors.
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G6. Risk Management with Multivariate GARCH

For simplicity consider a portfolio of several stocks which has value
V; at time t. In terms of the log returns for the next time period the

loss follows (5) and is
d d
Xi1 A
Lt_|_1 — _‘/t Zwt,i (6 bl — 1) ~ _‘/t Zwt,iXt—i—l,i — Lt—|—17
i=1 i=1
where wy ; = a;S; ;/V; is relative weight of stock ¢ at time ¢.

We assume the time series (X;) follows a model with structure

Xt — My + Ei/2Zt, 222 Zt S ft—b
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where (Z;) are SWN innovations with mean zero and covariance
matrix |z, such as a multivariate GARCH model.
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Normal Variance Mixture Innovations

If the innovations come from a normal or normal variance mixture
distribution, such as scaled Student ¢, the conditional distribution of
linearized loss L%, given F; will be of the same type.

o If Zt+1 ~ Nd(O, Id) then

t+1 ‘ Fi~N (_%wéﬂt-ua ‘/;52w:52t+1wt) :

o If Ziyq1 ~tq(r,0,(v—2)/v) then

vV — 2

/ 2
t—|—1 ‘ Fi~t1 (Va _V;bthJHp —V; wt2t+1wt) :

(See definition of multivariate t)
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Risk Measures

Conditional risk measures take form

VaR, = —Viwip,  + Viv/wiSi1wiqa(Fz)
ES, —Viwypy g + VivwiXi 1w E(Z | Z > qa(Fz))-

where Z denotes variate with univariate standard normal or scaled ¢
distribution

As before, we estimate u,_, ; and >; 1 by GARCH-based predictions.

For scaled ¢ we require (25) and (26) and v is estimated in GARCH
model.
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H. Copulas, Correlation and Extremal Dependence

Describing Dependence with Copulas

Survey of Useful Copula Families

Simulation of Copulas

Understanding the Limitations of Correlation

Tail dependence and other Alternative Dependence Measures

Fitting Copulas to Data
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H1. Modelling Dependence with Copulas

On Uniform Distributions
Lemma 1: probability transform

Let X be a random variable with continuous distribution function F'.
Then FI(X) ~ U(0,1) (standard uniform).

PFX)<u)=P(X<Fluw)=FF Yu)=u, VYue(0,1).
Lemma 2: quantile transform

Let U be uniform and F' the distribution function of any rv X.
Then F~Y(U) £ X so that P(F~1(U) < ) = F(x).

These facts are the key to all statistical simulation and essential in
dealing with copulas.
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A Definition
A copula is a multivariate distribution function C : [0,1]¢ — [0, 1]

with standard uniform margins (or a distribution with such a df).

Properties

e Uniform Margins
c,...,Lu,l,...,1)=u; foralli e {1,...,d}, u; € [0,1]

e Fréchet Bounds

d
maX{Zui—i—ld,O} < C(u) <min{uy,...,uq}.

1=1

d times
e

Remark: right hand side is df of (U,...,U), where U ~ U(0,1).
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Sklar’s Theorem

Let F' be a joint distribution function with margins Fy, ..., Fy.
There exists a copula such that for all z1,...,24 in [—00, o]

F(xy,...,zq) = C(F1(x1),..., Fa(xq)).

If the margins are continuous then C' is unique; otherwise C' is
uniquely determined on RanFi X RanFs... X RanFy.

And conversely, if C' is a copula and Fy, ..., Fy are univariate
distribution functions, then F' defined above is a multivariate df with

margins F1i, ..., Fy.
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Ildea of Proof in Continuous Case

Henceforth, unless explicitly stated, vectors X will be assumed to
have continuous marginal distributions. In this case:

F(ml,...,ﬂi’d) — P(Xl <5131,...,Xd<513d)
P(Fl(Xl) S Fl(ill'l), “ .. ,Fd(Xd) S Fd(ﬂj’d))
C(Fl(il?l),...,Fd(ZEd)).

The unique copula C' can be calculated from F, Fy, ..., F; using

Clu,...,uq) = F (F7 (u1), ..., F; (ug)).

(©2005 (Embrechts, Frey, McNeil) 172



Copulas and Dependence Structures

Sklar's theorem shows how a unique copula C' fully describes the
dependence of X. This motivates a further definition.

Definition: Copula of X
The copula of (X1,...,Xy) (or F) is the df C of
(F1(X1), .-, Fu(Xa)).

We sometimes refer to C' as the dependence structure of F'.

Invariance
C' is invariant under strictly increasing transformations of the
marginals.

If Ty, ..., T4 are strictly increasing, then (T1(X1),...,T4(Xy4)) has
the same copula as (X1,...,Xyg).
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Examples of copulas

e Independence

Xq,...,X4 are mutually independent <= their copula C satisfies
d

e Comonotonicity - perfect dependence
X; = Ty(X1), Ty strictly increasing,i = 2,...,d, <= C satisfies

C(ug,...,uq) = min{uy,...,uq}.

e Countermonotonicity - perfect negative dependence (d=2)

X, & T(X,), T strictly decreasing, <= C satisfies
C'(u1,us) = max{u; +us — 1,0}
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Parametric Copulas

There are basically two possibilities:

e Copulas implicit in well-known parametric distributions
Recall C(u,...,uq) = F (Fy " (w1),..., F; " (ua)).

e Closed-form parametric copula families.

Gaussian Copula: an implicit copula

Let X be standard multivariate normal with correlation matrix P.

Cﬁa(ula SR 7ud) — P((I)(Xl) < U, .. 7q)(Xd) < ’U,d)
= P(X1<® M(ur)y..., Xg <P Huyg))

where ® is df of standard normal.
P = I gives independence; as P — J we get comonotonicity.

(©2005 (Embrechts, Frey, McNeil)
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H2. Parametric Copula Families

Elliptical or Normal Mixture Copulas

The Gaussian copula is an elliptical copula. Using a similar approach

we can extract copulas from other multivariate normal mixture
distributions.

Examples

e The t copula C}, p

e [he generalised hyperbolic copula

The elliptical copulas are rich in parameters - parameter for every
pair of variables; easy to simulate.
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Archimedean Copulas d = 2

These have simple closed forms and are useful for calculations.
However, higher dimensional extensions are not rich in parameters.

e Gumbel Copula

1/8
Cgu(u17u2) — EXp <— ((— log Ul)ﬁ + (—log U2)B) ) :
B >1: 8 =1 gives independence; 3 — oo gives comonotonicity.
e Clayton Copula
—-1/8
Cgl(ul,UQ) = (ul_ﬁ—l—u;ﬁ—l) .

B8 > 0: 8 — 0 gives independence ; 3 — oo gives comonotonicity.
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Archimedean Copulas in Higher Dimensions

All our Archimedean copulas have the form

Clu,uz) =~ (P(u1) + ¥ (ug)),

where 1) : |0, 1] — [0, 00] is strictly decreasing and convex with
(1) =0 and limy_.g ¥ (t) = oo.
The simplest higher dimensional extension is

Clut, ... ua) = (Y(wr) + -+ + ¥(ua))-

Example: Gumbel copula: 9(t) = —(log(t))”

1/8
Cgt(u1, ..., ug) = exp (— ((—logm)ﬁ + (—logud)ﬁ) ) -

These copulas are exchangeable (invariant under permutations).
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H3. Simulating Copulas

Normal Mixture (Elliptical) Copulas

Simulating Gaussian copula C'5°

e Simulate X ~ Ny4(0, P)

e Set U= (®(X1),...,P(Xy,)) (probability transformation)
Simulating ¢ copula C

e Simulate X ~ t4(v,0, P)

e U= (t,(X1),...,t, (X4q)) (probability transformation)
t, is df of univariate ¢ distribution.

(©2005 (Embrechts, Frey, McNeil) 179



Meta—Gaussian and Meta—t¢ Distributions

If (U1,...,Uq) ~Cg and F; are univariate dfs other than univariate
normal then

(Fr (). Iy (Ua))
has a meta—Gaussian distribution. Thus it is easy to simulate vectors
with the Gaussian copula and arbitrary margins.

In a similar way we can construct and simulate from meta ¢,
distributions. These are distributions with copula C}, , and margins
other than univariate ¢,.
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Simulating Archimedean Copulas

For the most useful of the Archimedean copulas (such as Clayton
and Gumbel) techniques exist to simulate the exchangeable versions
in arbitrary dimensions. The theory on which this is based may be
found in Marshall and Olkin (1988).

Algorithm for d-dimensional Clayton copula C§'

e Simulate a gamma variate X with parameter a = 1/0.
This has density f(z) = 2% e™/I'(a).

e Simulate d independent standard uniforms Uy, ..., Uy.
—1/8 —-1/B
o Return (1= t) L (1 egti) ),
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H4. Understanding Limitations of Correlation

Drawbacks of Linear Correlation

Denote the linear correlation of two random variables X; and X5 by
p(X1, X3). We should be aware of the following.

e Linear correlation only gives a scalar summary of (linear)
dependence and var(X), var(Xs) must exist.

e X1, X5 independent = p(X,Y) = 0.
But p(X1, X2) =0 % X7, X5 independent.
Example: spherical bivariate t-distribution with v d.f.

e Linear correlation is not invariant with respect to strictly increasing
transformations 1" of X1, X5, i.e. generally

p(T'(X1),T(X2)) # p(X1, X2).
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A Fallacy in the Use of Correlation

Consider the random vector (X7, X5)'.

“Marginal distributions and correlation determine the joint
distribution”.

e True for the class bivariate normal distributions or, more generally,
for elliptical distributions.

e \Wrong in general, as the next example shows.
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Gaussian and Gumbel Copulas Compared

Gumbel

Gaussian

X1

X1

Margins are standard normal; correlation is 70%.

184
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Hb5. Alternative Dependence Concepts

Rank Correlation (let C' denote copula of X; and X5)
Spearman'’s rho

ps(X1,X2) = p(F1(X1), F2(X2)) = p(copula)

1 1
ps(Xl,XQ) = 12/ /{C(ul,l@)—ull@}duldl@.
0 0

Kendall's tau o
Take an independent copy of (X7, X5) denoted (X7, X5).

0 (X1, Xo) = ( ~ X)) (X — X2)>O) |

pr(X1,X2) = // (w1, u2)dC'(u1, u2) —
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Properties of Rank Correlation

(not shared by linear correlation)

True for Spearman’s rho (pg) or Kendall's tau (p-).

e pg depends only on copula of (X1, X5)".

e pg Is invariant under strictly increasing transformations of the
random variables.

e ps(X1,X2) =1 <= X;, Xy comonotonic.

e ps(X1,Xs) =—1 <= X, Xy countermonotonic.
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Kendall’s Tau in Elliptical Models

Suppose X = (X7, X3)" has any elliptical distribution; for example
X ~ to(v, u, ). Then

9 (X1, X) = 2 aresin (p(X1, Xa)) (28)

v

Remarks:

1. In case of infinite variances we simply interpret p(X1, X5) as

Yi2/v/21,122,2.
2. Result of course implies that if Y has copula C},  then

,OT(Yl, Yg) — %arcsin(PLg).
3. An estimator of p, is given by

. 1
pr(X1, Xo) = 7x ) sen[(Xin— X;1) (Xi2 — Xj2)].

(2) 1<i<y<n
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Tail Dependence or Extremal Dependence

Objective: measure dependence in joint tail of bivariate distribution.
When limit exists, coefficient of upper tail dependence is

)\u(X]_,XQ) — (}1_{% P(X2 > VaRq(Xg) ’ X1 > V&Rq(Xl)),

Analogously the coefficient of lower tail dependence is

)\g(Xl,XQ) = lim P(X2 S V&RQ(XQ) ‘ X1 S VaRq(Xl)) .

q—0

These are functions of the copula given by

N = 1im G109 gy =20+ Claa)
q—1 1—q q—1 1—q
A¢e = lim C’(q,q).

q—0 q
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Tail Dependence

Clearly A\, € [0,1] and Ay € [0, 1].

For elliptical copulas A\, = Ay =: A. True of all copulas with radial
symmetry: (U1, Us) = (1 — Uy, 1 — Us).

Terminology:

Ay € (0,1]: upper tail dependence,

A, = 0: asymptotic independence in upper tail,
Ae € (0,1]: lower tail dependence,

Ay = 0: asymptotic independence in lower tail.
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Examples of tail dependence

The Gaussian copula is asymptotically independent for |p| < 1.

The t copula is tail dependent when p > —1.

A=2t,41 (\/V+1\/1—/0/\/H)-

The Gumbel copula is upper tail dependent for 5 > 1.

Ay =2 — 215,
The Clayton copula is lower tail dependent for 5 > 0.
Ay = 2~ 1/8,

Recall dependence model in Fallacy 1b: A, = Ay = 0.5.
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Gaussian and t3 Copulas Compared

Normal Dependence t Dependence

X2
0

Copula parameter p = 0.7; quantiles lines 0.5% and 99.5%.
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Joint Tail Probabilities at Finite Levels

p C Quantile

95% 99% 99.5% 99.9%
05 N |[1.21x1072 1.29 x1073 496 x 10~* 5.42 x 107°
05 t8 1.20 1.65 1.94 3.01
05 t4 1.39 2.22 2.79 4.86
05 t3 1.50 2.55 3.26 5.83
07 N |195x1072 267x1072 1.14x 1073 1.60 x 1074
0.7 t8 1.11 1.33 1.46 1.86
0.7 t4 1.21 1.60 1.82 2.52
0.7 t3 1.27 1.74 2.01 2.83

For normal copula probability is given.

For ¢ copulas the factor by which Gaussian probability must be
multiplied is given.
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Joint Tail Probabilities, d > 2

p C Dimension d
2 3 4 5

05 N |[1.29x 1073 3.66x107% 149 x10~* 7.48 x 107°
0.5 t8 1.65 2.36 3.09 3.82

05 t4 2.22 3.82 5.66 7.68
05 t3 2.55 4.72 7.35 10.34
07 N |267x1073 1.28x1072% 7.77x10~* 5.35x 1074
0.7 t8 1.33 1.58 1.78 1.95
0.7 t4 1.60 2.10 253 2.91

0.7 t3 1.74 2.39 2.97 3.45

We consider only 99% quantile and case of equal correlations.
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Financial Interpretation

Consider daily returns on five financial instruments and suppose that
we believe that all correlations between returns are equal to 50%.
However, we are unsure about the best multivariate model for these
data.

If returns follow a multivariate Gaussian distribution then the
probability that on any day all returns fall below their 1% quantiles
is 7.48 x 107°. In the long run such an event will happen once every
13369 trading days on average, that is roughly once every 51.4 years
(assuming 260 trading days in a year).

On the other hand, if returns follow a multivariate t distribution with
four degrees of freedom then such an event will happen 7.68 times
more often, that is roughly once every 6.7 years.
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H6. Fitting Copulas to Data

Situation
We have identically distributed data vectors X4,...,X,, from a
distribution with unknown (continuous) margins F1, ..., Fy and with

unknown copula C. We adopt a two-stage estimation procedure.

Stage 1
Estimate marginal distributions either with

1. parametric models 1/7\1, e ,ﬁd,

2. a form of the empirical distribution function such as
Fj(x):%“Z?zll{Xz’ij}, jZl,...,d,

3. empirical df with EVT tail model.
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Stage 2: Estimating the Copula

We form a pseudo-sample of observations from the copula

/

~ ~ ~ / ~ ~
Ui — (Ui,la .. -aUz’,d) — (Fl(Xi,1)7 c. 7Fd(Xi,d)> . 1= 1, e ..y T

and fit parametric copula C' by maximum likelihood.

Copula density is c(uq,...,uq;0) = %---%C(ul, o ug0),

where 0 denote unknown parameters. The log-likelihood is
l(g;fjla e 7671) = Zlogc(ﬁi,la . -7(7i,d§9)'
i=1

Independence of vector observations assumed for simplicity. More
theory is found in Genest and Rivest (1993) and Maschal and Zeevi

(2002).
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BMW-Siemens Example: Stage 1

-
‘. .23 - i ‘- - PR - -
-2 A AN S Tl -
s SIS e el o - -
DRI S B 2 ®e o ST . -
o *o® o < L -
-—p' P > o= - ..
B ey T et .. - T - - =F - - b -
.::..- . : £ ® - e - - - - o
cw & .‘.%- - - - -
Y P 2. et e - - - - - -
< - o . ael - - ® - - - - -
- T, o = - - & - -
-~ - o - e =2 - - e = - - - - .
e o e > - 32— -~ " 53 - - - -
- ® e, .,:’8 - b PO - ; - b - <
" s o < - e & v - - . - & - -
b < 2 =" -..0 == “o ::’.- - e < - - o
- - S*‘ kg - - L -® o = - - ® -
~ N T A - R T
Y cce .= -~ 2 e - - - - - ®
~ T ImTEAs LT st T
- - - -
€ et SR - Tt A = -
- hg & - .. e o el - -~ -
- -® - = < - ® - -
e o e ® e ", - -2 - - e & ee
s - - e g T P, ¥ "= “- e - <
- - - SF- - o= . = - - * “oe -
e - o s = - - Dt - g -
P h - - o -f.o:o.- P - = - - - - - o
- - “r - T Fac T . Tl e e~ e T - - -
- - - R - o= - - -
S L A Ui : - Tl 1Lk
<
- .t R Vgt R S A" L T L I
- - - - > - 2, PR .o -
- e o e*e - o - - - e 2 a -
- ® - > --.. e ®e :- < ... ..:“: : .-.- N .... :: - < - -~ "
- - T ea ® - - g e Tee " a - e -
- S
- - - : :. ::. --- <~ -- ..:.- e® o® . o.-- - - ® - -
- . s " ee 352 o ':.‘ Soc. e - _-
- By - o e - -:- = e D " e == -
o R R R - i T
- Ce "= = s ", - < < -
- - - - - - - - - ° o -
- - oo - - 2> " - -y ® e, ®
T I P
- 3 - - o - cse - - e s & o ® -
- - e - oo = - = < oo -
- - - - - - ® Cm T e, ® -
< < - " % . ez '.) T et e "cTes .-
hd - . - - - ~ oo -
P - - -
e - e S .. - o= -2 K SN,
& ee, - - e o o - 5! e o =
- - -~ ® e o * o - e e =T
- - - U e - >t . T -
- T i P
- - . “s - - - .o " & e tﬁ"'
Ce = - -,
e T o - ® e -..o - .; -- - .: - }': ;?ﬁ
-~ - e ® e o2
- - *TETNR

SNIaIN3AIS

(©2005 (Embrechts, Frey, McNeil)

0]
0

10

08

06

04

02

00

BMW

The pseudo-sample from copula after estimation of margins.

197



Stage 2: Parametric Fitting of Copulas

Copula | p,8 | v | std.error(s) | log-likelihood
Gauss | 0.70 0.0098 610.39
t 0.70 | 4.89 | 0.0122,0.73 649.25
Gumbel | 1.90 0.0363 584.46
Clayton | 1.42 0.0541 527.46

Goodness-of-fit.
Akaike's criterion (AIC) suggests choosing model that minimises

AIC = 2p — 2 - (log-likelihood),

where p = number of parameters of model. This is clearly ¢ model.

Remark. Formal methods for goodness-of-fit also available.
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Fitting the ¢ or Gaussian Copulas

ML estimation may be difficult in very high dimensions, due to the
large number of parameters these copulas possess. As an alternative
we can use the rank correlation calibration methods described earlier.
For the ¢t copula a hybrid method is possible:

e Estimate Kendall's tau matrix from the data.

e Recall that if X is meta-t with df C] p(Fi,...,Fy) then
p-(X;, X;) = 2arcsin(P; ;). Follows from (28).

e Estimate ﬁzy = sin (£p,(X;, X;)). Check positive definiteness!

e Estimate remaining parameter v by the ML method.
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Dow Jones Example: Stage 1
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Stage 2: Fitting the ¢t Copula

0
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n
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|

[e]=1-) 009 oss eYel=]
pooyliaxi—60|

Daily returns on ATT, General Electric, IBM, McDonalds, Microsoft.
Form of likelihood for nu indicates non-Gaussian dependence.
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. Maxima and Worst Cases

Limiting Behaviour of Sums and Maxima
Extreme Value Distributions

The Fisher—Tippett Theorem

The Block Maxima Method

S&P Example
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1. Limiting Behaviour of Maxima

Let X1, X9,... be iid random variables with distribution function
(df) F. In risk management applications these could represent
financial losses, operational losses or insurance losses.

Let M,, = max (X1,...,X,,) be worst—case loss in a sample of
n losses. Clearly

PM,<z)=PX;1<uz,.... X, <x)=F"(x).

n—=oo

It can be shown that, almost surely, M,, — xr, where
rp:=sup{r € R: F(x) < 1} < oo is the right endpoint of F.

But what about normalized maxima?

(©2005 (Embrechts, Frey, McNeil)
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Limiting Behaviour of Sums or Averages
(See | |, Chapter 2.)

We are familiar with the central limit theorem.

Let X7, Xo,... be iid with finite mean u and finite variance o2. Let
Sn:Xl—l—XQ—l——l—Xn Then

P ((Sn —nup) /Vno? < x) 2 o(x),
where ® is the distribution function of the standard normal

distribution . N
2
d(r) = — e/ 2qy, .
( ) V 2T /—oo

Note, more generally, the limiting distributions for appropriately
normalized sample sums are the class of a—stable distributions;
Gaussian distribution is a special case.
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Limiting Behaviour of Sample Extrema

(See | ], Chapter 3.)
Let X1, Xo,... beiid from F and let M,, = max (X1,...,X,).

Suppose we can find sequences of real numbers a,, > 0 and b,, such
that (M,, — b,,) /a,, the sequence of normalized maxima, converges
in distribution, 1i.e.

P (M, —b,) /a, < x) = F"(apx +b,) — H(z),

for some non—degenerate df H(x).

If this condition holds we say that F' is in the maximum domain of
attraction of H, abbreviated FF € MDA(H) . Note that such an H is
determined up to location and scale, i.e. will specify a unique type

of distribution.
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12. Generalized Extreme Value Distribution

The GEV has df
<D (— —1/¢
Hg(az){ep( (:F&U) R gio’
eXp (—6 ) 5_07

where 1 4+ &x > 0 and & is the shape parameter. Note, this
parametrization is continuous in &. For

£ >0 Hgis equalin type to classical Fréchet df

£ =0 H¢isequalin type to classical Gumbel df
§

£ <0 Hgis equalin type to classical Weibull df.

We introduce location and scale parameters y and o > 0 and work
with He , o(x) := He((x — p) /o). Clearly He ,, » is of type He.
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GEV: distribution functions for various &

D.f.s
o
—
[o0]
S
(o]
=
x
I
<
3 Weibull H(-0.5,0,1)
—— Gumbel H(0,0,1)
rrrrrrrrrr Frechet H(0.5,0,1)
[q\]
o
(e)
= _
4 2 0 2 !
X
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GEV: densities for various &

Densities
<t
< :
Weibull H(-0.5,0,1)
—— Gumbel H(0,0,1)
rrrrrrrrrr Frechet H(0.5,0,1)
(90)
il
<
=
N -
—
-
o | _
(e»)
4 -2 0 2 )
X
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13. Fisher—Tippett Theorem (1928)

Theorem: If F' € MDA(H) then H is of the type H¢ for some €.

“If suitably normalized maxima converge in distribution to
a non—degenerate limit, then the limit distribution must be an
extreme value distribution.”

Remark 1: Essentially all commonly encountered continuous
distributions are in the maximum domain of attraction of an extreme
value distribution.

Remark 2: We can always choose normalizing sequences a,, and b,
so that the limit law H¢ appears in standard form (without
relocation or rescaling).
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Fisher-Tippett: Examples
Recall: F' € MDA(H;), iff there are sequences a,, and b,, with

P (M, —by) /an, < z) = F"(apx +b,) — H(z).

We have the following examples:

e The exponential distribution, F(x) =1 — e M AN>0 2>0,isin
MDA(Hy) (Gumbel-case). Take a,, = 1/X, b, = (logn)/A\.

e T he Pareto distribution,

K

F(x):1—< ) , a,k>0, x>0,

K+ x

is in MDA(H,,,) (Fréchet case). Take a, = knt /o, by, =
knt/® — k.
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14. Using Fisher—Tippett: Block Maxima Method

Assume that we have a large enough block of n iid random
variables so that the limit result is more or less exact, i.e. da,, > 0,
b, € R such that, for some &,

M, — b,

A

Now set y = a,x +0b,. P (M, <y)~ H; (y_b”) = He b, 0, (Yy).

Qn,

We wish to estimate &, b,, and a,,.

Implication: We collect data on block maxima and fit the
three—parameter form of the GEV. For this we require a lot of raw
data so that we can form sufficiently many, sufficiently large blocks.
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ML Inference for Maxima

/
We have block maxima data y = (Mf,gl), . 7M§Lm)> from m blocks

of size n. We wish to estimate 8 = (£, u,0)’. We construct

a log—likelihood by assuming we have independent observations from
a GEV with density hy,

[(6;y) = log <H hg (Mogi)) {14e (M —p) /o>o}>

AN

and maximize this w.r.t. @ to obtain the MLE 6 = (&, o).

Clearly, in defining blocks, bias and variance must be traded off. We
reduce bias by increasing the block size n; we reduce variance by
increasing the number of blocks m.
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15. An Example: S&P 500

It is the early evening of Friday the 16th October 1987. In the equity
markets it has been an unusually turbulent week, which has seen the
S&P 500 index fall by 9.21%. On that Friday alone the index is
down 5.25% on the previous day, the largest one—day fall since 1962.
At our disposal are all daily closing values of the index since 1960.

We analyse annual maxima of daily percentage falls in the index.
These values Mz(é()), o ,Mz(gg) are assumed to be iid from H¢ ,, ;.

Remark. Although we have only justified this choice of limiting
distribution for maxima of iid data, it turns out that the GEV is also
the correct limit for maxima of stationary time series, under some
technical conditions on the nature of the dependence. These
conditions are fulfilled, for example, by GARCH processes.
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S&P 500 Return Data

S&P 500 to 16th October 1987

05.01.60 05.01.65 05.01.70 05.01.75 05.01.80 05.01.85

Time
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Assessing the Risk in S&P

We will address the following two questions:

e What is the probability that next year's maximum exceeds all

previous levels?

e What is the 40—year return level Ragp 407

In the first question we assess the probability of observing a new
record. In the second problem we define and estimate a rare stress or

scenario loss.
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Return Levels
R, k., the k n—block return level, is defined by
P(Mn > Rn,k) = 1/k;

l.e. it is that level which is exceeded in one out of every k n—blocks,
on average.

We use the approximation

Rnka§;J(1—1/k)zu+a(( log(1 — 1/k))~ —1) 3

We wish to estimate this functional of the unknown parameters of
our GEV model for maxima of n—blocks.
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S—Plus Maxima Analysis with EVIS

> out <- gev(-sp,"year")
> out
$n.all: [1] 6985

$n: [1] 28
$data:
1960 1961 1962 1963
2.268191 2.083017 6.675635 2.806479
1968 1969 1970 1971
1.899367 1.903001 2.768166 1.522388
1976 1977 1978 1979
1.797353 1.625611 2.009257 2.957772
1984 1985 1986 1987

1.820587 1.455301 4.816644 5.253623

$par.ests:
xi sigma mu
0.3343843 0.6715922 1.974976

$par.ses:
xi sigma mu

0.2081 0.130821 0.1512828

$nllh.final:
[1] 38.33949
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1964 1965 1966 1967
1.253012 1.757765 2.460411 1.558183
1972 1973 1974 1975
1.319013 3.051598 3.6712566 2.362394
1980 1981 1982 1983
3.006734 2.886327 3.996544 2.697254
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S&P Example (continued)
Answers:

e Probability is estimated by

L= He,, (max (ML), ..., MED)) =0.027.

e 260,40 IS estimated by

A

1 o _
H. ! (1-1/40) = 6.83.

It is important to construct confidence intervals for such statistics.

We use asymptotic likelihood ratio ideas to construct asymmetric
intervals — the so—called profile likelihood method.
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Estimated 40—Year Return Level

S&P Negative Returns with 40 Year Return Level

15

10

n
1

05.01.60 05.01.65 05.01.70 05.01.75 05.01.80 05.01.85

Time
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J. The Peaks—over—Thresholds (POT) Method

. The Generalized Pareto Distribution (GPD)
The POT Method: Theoretical Foundations
Modelling Tails and Quantiles of Distributions
The Danish Fire Loss Analysis

Expected Shortfall and Mean Excess Plot
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J1. Generalized Pareto Distribution

The GPD is a two parameter distribution with df

1— (1+€x/B8) 8 €40,
Geple) =
1—€Xp(—x/ﬂ) 5207
where 8 > 0, and the support is x > 0 when & > 0 and
0<ax<—0/& when £ <O.
This subsumes:

£ >0 Pareto (reparametrized version)
& =0 exponential
£ <0 Pareto type Il.
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Moments. For £ > 0 distribution is heavy tailed. E (Xk) does not
exist for k > 1/€.
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GPD: distribution functions for various &

o
S -
(o 0)
o
(o)
o
x
(@)
<
3 Pareto Il G(-0.5,1)
—— Exponential G(0,1)
rrrrrrrrrr Pareto G(0.5,1)
[9\]
o
’.
o ,"I
o
0 2 4 ° °
X
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GPD: densities for various &
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J2. POT Method: Theoretical Foundations

The excess distribution: Given that a loss exceeds a high
threshold, by how much can the threshold be exceeded?

Let u be the high threshold and define the excess distribution above
the threshold u to have the df

F(r+u) — F(u)
1 — F(u) ’

Fur)=P(X —u<zx|X >u) =

for 0 < x < xp — u where xp < o0 is the right endpoint of F'.

Extreme value theory suggests the GPD is a natural approximation
for this distribution.
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Examples

1. Exponential. F(z) =1—¢e*, A >0, x > 0.

The “lack—of-memory” property.

2. GPD. F(z) = G¢ ().

Fu(z) = Ge greul)

where0§x<ooiffZOandO§x<—§—uif£<O.

The excess distribution of a GPD remains a GPD with the same
shape parameter; only the scaling changes.
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Asymptotics of Excess Distribution

Theorem. (Pickands—Balkema—de Haan (1974/75)) We can find a
function G(u) such that

lim sup | Fu(z) — Ge gy (x)] =0,

U=TF 0<z<zp—u

if and only if ' € MDA (H¢), £ € R.

Essentially all the common continuous distributions used in risk
management or insurance mathematics are in MDA (H¢) for some
value of &, as we will see below.
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Exploiting Pickands—Balkema—de Haan

“For a wide class of distributions, the distribution of the excesses
over high thresholds can be approximated by the GPD.”

This result suggests we choose u high and assume the limit result is
more or less exact

for some £ and 5. To estimate these parameters we fit the GPD to

the excess amounts over the threshold w. Standard properties of
maximum likelihood estimators apply if & > —0.5.

To implement the POT method we must choose a suitable
threshold u. There are data—analytic tools (e.g. mean excess plot) to
help us here, although later simulations will suggest that inference is
often robust to choice of threshold.
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When does ' € MDA (H;) hold?

1. Fréchet Case: (£ > 0)
Gnedenko (1943) showed that for £ > 0

F € MDA (He) <= 1— F(z) =2 Y¢L(z),

for some slowly varying function L(x).

A function L on (0,00) is slowly varying if

limx_wo%zl, t>0.

Summary:

If the tail of the df F' decays like a power function, then the
distribution is in MDA (H¢) for £ > 0.

(©2005 (Embrechts, Frey, McNeil) 231



When does I € MDA (H;) hold? (1)

Examples of Fréchet case: Heavy-tailed distributions such as
Pareto, Burr, loggamma, Cauchy and ¢—distributions as well as
various mixture models. Not all moments are finite.

2. Gumbel Case: ' € MDA (Hy)

The characterization of this class is more complicated. Essentially it
contains distributions whose tails decay roughly exponentially and we
call these distributions light—tailed. All moments exist for
distributions in the Gumbel class.

Examples are the Normal, lognormal, exponential and gamma.
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J3. Estimating Tails of Distributions

R Smith (1987) proposed a tail estimator based on GPD
approximation to excess distribution. Let N, = > | Ligx,>u)y De
the random number of exceedances of u from iid sample X1,...,.X,,.

Note that for x > u we may write F/(z) = F(u)F,(x — u).

We estimate F'(u) empirically by N, /n and and F,(z — ) using a
GPD approximation to obtain the tail estimator

N mew\ Y
F<x>=—(1+s?“) ;

n

this estimator is only valid for £ > u. A high u reduces bias in
estimating excess function. A low u reduces variance in estimating
excess function and F'(u).
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Estimating Quantiles in Tail

Recall the gth quantile of F’
re=F"(q) =inf{lr e R: F(x) > q}.

Suppose x, > u or equivalently ¢ > F'(u). By inverting the tail
estimation formula we get

: ¢
fq:qu? (N%(l_‘”> 1

Asymmetric confidence interval for x, can be constructed using
profile likelihood method.
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J4. Danish Fire Loss Example

The Danish data consist of 2167 losses exceeding one million
Danish Krone from the years 1980 to 1990. The loss figure is a total
loss for the event concerned and includes damage to buildings,
damage to contents of buildings as well as loss of profits. The data
have been adjusted for inflation to reflect 1985 values.

Large Insurance Claims
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EVIS POT Analysis

> out <- gpd(danish,10)
> out

$n:

[1] 2167

$data:
[1] 11.37482 26.21464 14.12208
[4] 11.71303 12.46559 17.56955
[7] 13.62079 21.96193 263.25037
...etc...
[106] 144.65759 28.63036 19.26568
[109] 17.73927

$threshold:
[1] 10

$p.less.thresh:
[1] 0.9497

$n.exceed:
[1] 109

(©2005 (Embrechts, Frey, McNeil)

$par.ests:
xi bet

a

0.4969857 6.975468

$par.ses:
xi beta
0.1362838 1.11349

$varcov:

[,1]

[,2]

[1,] 0.01857326 -0.08194611

[2,] -0.08194611

$information:
[1] "observed"

$converged:
(11 T

$nllh.final:
[1] 374.893

1.23986096
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Estimating Excess df

Estimate of Excess Distribution

1.0

0.8

Fu(x-u)
0.6

0.4

0.2

0.0

10 50

100
X (on log scale)
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Estimating Tail of Underlying df

Tail of Underlying Distribution

0.05000

0.00500

X) (on log scale)

1-F(
0.00050

0.00005

10 50 100

X (on log scale)
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Estimating a Quantile (99%)
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Varying the Threshold |

Threshold
3.13 3.38 3.76 4.09 4.49 5.08 5.78 7.24 10.70 17.70

1.0

0.95)

Shape (xi) (CI, p
0.5

0.0

500 466 433 399 366 332 299 265 232 198 165 132 98 65 31

Exceedances
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Varying the Threshold ||

Threshold
3.13 3.37 3.71 4.00 4.39 4.82 5.50 6.31 8.25 12.40
o | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
L() -
[9\}
o
o -
N
1)
D
o
1 o
o L -
- —
o
2
c
©
> o
g =
()]
o
[
Lo

500 468 437 406 375 344 313 282 251 220 189 158 127 96 65

Exceedances
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J5. Expected Shortfall and Mean Excess Plot

The mean excess function of a rv X is
e(u) = FE(X —u | X > u).

It is the mean of the excess distribution function above the threshold
u expressed as a function of w.

Our Model Assumption:
Excess losses over threshold u are exactly GPD with £ < 1, i.e.
X —u| X >u~ GPD(& 3). Itis easily shown that for any higher
threshold v > u
_ B+ Ev—u)

e(v) =E(X —v| X >v)= T ¢

so that mean excess function is linear in v above wu.
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Sample Mean Excess Plot

The sample mean excess plot estimates e(u) in the region where we

have data: . N
Zi:1(Xi — u)

Z?:l 1{Xz'>u}
We seek a threshold u, above which the plot is roughly linear.

en(u) =

,

If we can find such a threshold, the result of Pickands-Balkema-De
Haan could be applied above that threshold.

Note that the plot is erratic for large u, when the averaging is over
very few excesses. It is often better to omit these from the plot.
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Mean Excess Plot for Danish Data
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Expected Shortfall: Estimation ||
Now observe that for z, > u

ES,(X)=E(X|X > ,)
=z,+E(X —2,]| X >z,

ﬂ"‘f(xq_u)
1—¢ '

:qu—l—

This yields the estimator

_ 1 _£
ES,(X) = i, <1§+(1§; ) .
q
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Estimates of 99% VaR and ES (Danish Data)
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K. Advanced Topics in EVT

Efficient Quantile Estimation with POT

The POT Method with Dependent Data
Dynamic EVT in Time Series Framework

An Example with S&P Data
. VaR Estimation and Backtesting

. Var for Longer Time Horizons — Scaling Rules
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K1. Efficient Quantile Estimation with POT

Estimation of quantiles with POT is a more efficient method than
simple empirical quantile estimation. The latter is often used in the
historical simulation approach, but gives poor estimates when we are
estimating at the edge of the sample.

Recall that we can compare the efficiency of two quantile estimators
by comparing their mean squared errors (MSE). If Z,, is an estimator
of z, then

MSE (z,) L ((53\(1 - xq)2)

= var(Zq) + E (Zq — xq)2

Good estimators trade variance of against bias to give small MSE.
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Comparison of Estimators

Take ordered data X1y > ... > X, (no ties) and place threshold u
at an order statistic: u = X(41).

We emphasize dependence of POT estimator on choice of k by

writing ) A
. 15 n —&k
Zqgo = X(k+1) T g_k (E(l B Q)) 1
k

where k € {j e N:j >n(l—q)}.
The empirical quantile estimator is 5:\(]13 = X([n(1—q)]+1)-
Example. n = 1000 implies T 995 = X(¢)-

We compare MSE (Z,,1,) with MSE (z).
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Simulation Study

For various underlying F', various sample sizes n and various quantile
probabilities ¢ we compare the MSEs of these estimators. MSEs are
estimated by Monte Carlo, i.e. repeated simulation of random
samples from F'.

Examples
Hard: ¢—distribution, n = 1000, ¢ = 0.999.
Easy: normal distribution n = 1000, ¢ = 0.95.

We will actually compare

_ J/MSEG,)

Lq

RRMSE (&)

to express error relative to original units.
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Bias (0.95 quantile)
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K2. Statistical Implications of Dependence

If we believe we have a (strictly) stationary time series with a
stationary distribution F' in the MDA of an extreme value
distribution, then we can still apply the POT method and attempt
to approximate the excess distribution Fy,(x) by a GPD for some
high threshold w.

Although the marginal distribution of excesses may be approximately
GPD, the joint distribution is unknown. We form the likelihood by
making the simplifying assumption of independent excesses.

We can expect our estimation procedure to deliver consistent
parameter estimates, but standard errors and confidence intervals
may be over-optimistically small. Dependent samples carry less
information about extreme events than independent samples of the
same size.
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Other Possibilities

e Use statistical estimation method for GPD parameters which
does not implicitly assume independence of the excesses, such
as probability weighted moments. However this method does not
deliver standard errors.

e Attempt to make the excesses more independent by the technique
of declustering and then use ML estimation. We identify clusters
of exceedances and reduce each cluster to a single representative
such as the cluster maximum.
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K3. EVT in a Time Series Framework

We assume (negative) returns follow stationary time series of the
form

Xt = g + 042y

Dynamics of conditional mean p; and conditional volatility o; are
given by an AR(1)-GARCH(1,1) model:

Ut = QbXt—l 3

07:2 = ag + oy (Xy—1 — Mt—l)2 + 50752—1 ;

with o, a1, 3> 0, a1 + 6 <1 and |¢p| < 1.

We assume (Z;) is strict white noise with E(Z;) = 0 and

var(Z;) = 1, but leave exact innovation distribution unspecified.
Other GARCH-type models could be used if desired.
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Dynamic EVT

Given a data sample z;_,11,...,2: from (X;) we adopt a two-stage
estimation procedure. (Typically we take n = 1000.)

e We forecast p¢1 and oy by fitting an AR-GARCH model with
unspecified innovation distribution by pseudo-maximume-likelihood

(PML) and calculating 1-step predictions.
(PML yields consistent estimator of GARCH—parameters)

e We consider the model residuals to be iid realisations from the
Innovation distribution and estimate the tails of this distribution
using EVT (GPD-fitting). In particular estimates of quantiles z,
and expected shortfalls £ [Z | Z > z,] for the distribution of (Z;)
can be determined.
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Risk Measures

Recall that we must distinguish between risk measures based on tails
of conditional and unconditional distributions of the loss - in this
case the negative return.

We are interested in the former and thus calculate risk measures
based on the conditional distribuion Fix, |7,

For a one-step time horizon risk measure estimates are easily
computed from estimates of z, and E |[Z | Z > z,] and predictions

of p;41 and o411 using

VaRy(X¢y1) = pe1 + 0412,
ESq(Xt+1) — M¢41 -+ O't+1E [Z ‘ /> Zq] .
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Dynamic EVT I

Advantages of this approach

We model tails of innovation distribution explicitly, using methods
which are supported by statistical theory. Residuals are

approximately iid, so use of standard POT procedure is
unproblematic.

Alternative Estimation Approaches.

(a) Assume (X;) is GARCH process with normal innovations and fit
by standard ML. In practice high quantiles are often underestimated.

(b) Assume (X;) is GARCH process with scaled ¢,—innovations. Use
ML to estimate v and GARCH—parameters at the same time.

In practice: this works much better but has some problems with
asymmetric return series.
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K4. Example with S&P Data

MWWWWWMMWWWWWWWWWW
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(0] 200 400 600 800 1000
Series and Conditional SD

1000 day excerpt from series of negative log returns on Standard &
Poors index containing crash of 1987.
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“Prewhitening” with GARCH

Series : data Series : abs(data)
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Heavy—Tailedness Remains

QQ-plot of residuals; raw data from S&P
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Comparison with Standard Conditional Distributions

Losses
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1-F(x) (on log scale)

0.0005

0.0001

(©2005 (Embrechts, Frey, McNeil)

5

x (on log scale)

1-F(x) (on log scale)

0.0010 0.0100 0.1000

0.0001

Gains

—— GPD
----  Normal

2

X (on log scale)

263



Kb. Backtesting

Eiofgencssiscirne Decaarmant
Techinischire Hochscirule f=14
L Afatfrermnalics

The ETH Riskometer -

Market Risk Summary for Major | ndices on 18/04/00

Dynamic Risk M easur es

I ndex VaR (95%0) ESfall (9520) VaR (99%206) ESfall (99206) Volatility
S&P 500 3.98 5.99 7.16 9.46 40.1
Dow Jones 3.66 5.43 6.47 8.47 37.4
DAX 3.08 4.21 4.89 6.12 29.3

VaR and ESfall prognoses are estimates of potential daily losses expressed as percentage
Volatility is an annualized estimate expressed as a percentage; click on column heading f
history.

Data are kindly provided b¥Ylsen & Associates

Developer s ar e Alexander McNeilandRudiger Freyn the group fofinancial and insurance
mathematicsn themathematicslepartment of ETH Zarich.

Our methods, which combine econometric modelling and extreme value theory, are descri
our research paper; there postscriptandpdf versions.

VaR Backtests & Violation Summary

In all

DAX backtesttableor picture
Dow Jones backtesableor picture
S&P backtestableor picture

backtest pictures the 95206 VVaR is marked by a solid red line and the 99%26 VaR by a dotted

Circles and triangles indicate violation respectively.

Alexander McNeil ( mcneil @math.ethz.ch )
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Dynamic EVT: 95% and 99% VaR Predictions

DAX Returns: losses (+ve) and profits (-ve)
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Backtesting Il — numbers of violations

S&P DAX
Length of Test 7414 5146
0.95 Quantile
Expected 371 257
Conditional EVT 366 (0.41) 258 (0.49)
Conditional Normal 384 (0.25) 238 (0.11)
Conditional t 404 (0.04) 253 (0.41)
Unconditional EVT 402 (0.05) 266 (0.30)
0.99 Quantile
Expected 74 51
Conditional EVT 73 (0.48) 55 (0.33)
Conditional Normal 104 (0.00) 74 (0.00)
Conditional t 78 (0.34) 61 (0.11)
Unconditional EVT 86 (0.10) 59 (0.16)

(©2005 (Embrechts, Frey, McNeil)

Remark: Performance of ES estimates even more sensitive to
suitability of model in the tail region.
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K6. Multi-day returns: Simulation of P&L

We adopt a Monte Carlo procedure and simulate from our dynamic
model. We simulate iid noise from composite distribution made up

of empirical middle and GPD tails.

\

(2)

k

(2)|z—=z(nm—p)l AL
i (1 —l—fk BES)_ ) ) if 2 < Z(n—k)

1 ;_7/:1 i<z If Zin—k) S 2 <X Z(k41)s

(1)

n

k (1) 2~ 2(k+1 e
1__<1+§/< ﬁ) if 2> 2(41)-

For an h-day calculation we simulate 1000 (say) conditionally

independent future paths x;.1,...,z+1n and compute simulated iid
observations x;11 + ...+ T+ . Risk measures are estimated from

simulated data.
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Goal: assess performance and compare with “square root of time

Empirical Multi—-day Results

rule” (valid for iid normally distributed returns).

Square root of time scaling does not seem sophisticated enough!
Note that formal statistical testing difficult because of overlapping

returns.

S&P DAX BMW

h = 10; length of test 7405 5136 5136
0.95 Quantile

Expected 370 257 257
Conditional EVT (h-day) 403 249 231
Square—root—of—time 623 318 315
0.99 Quantile

Expected 74 51 51
Conditional EVT (h-day) 85 48 53
Square-root-of-time 206 83 70

(©2005 (Embrechts, Frey, McNeil)
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