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Size Matters 
 

The Kelly Criterion and the Importance of Money Management 
 
To suppose that safety-first consists in having a small gamble in a large number of 
different [companies] where I have no information to reach a good judgment, as 
compared with a substantial stake in a company where one’s information is adequate, 
strikes me as a travesty of investment policy. 
 
 

John Maynard Keynes 
Letter to F.C. Scott, February 6, 1942 1 

 
Pressing the Edge 
 
As an investor, maximizing wealth over time requires you to do two things: find 
situations where you have an analytical edge; and allocate the appropriate amount of 
capital when you do have an edge. While Wall Street dedicates a substantial 
percentage of time and effort trying to gain an edge, very few portfolio managers 
understand how to size their positions to maximize long-term wealth.  
 
A simple example illustrates the point. Assume you can participate in a coin toss game 
where heads pays $2 and tails costs $1. You start with a $100 bankroll and can play for 
40 rounds. What betting strategy will allow you to achieve the greatest probability of the 
most money at the end of the fortieth round? 2  
 
We’ll get to the answer in a moment, but let’s consider the obvious extremes: if you bet 
too little, you won’t take advantage of a clearly positive expected-value opportunity. On 
the other hand, if you bet everything, you risk losing all of your money. Money 
management is all about determining the right amount of capital to allocate to an 
investment opportunity, given the edge and the frequency of such opportunities. 
 
Position size is extremely important in determining equity portfolio returns. Two portfolio 
managers with the same list and number of stocks can generate meaningfully different 
results based on how they allocate the capital among the stocks. Great investors don’t 
stop with finding attractive investment opportunities; they know how to take maximum 
advantage of the opportunities. As Charlie Munger says, good investing combines 
patience and aggressive opportunism. 
 
Morningstar data reveal that most investors don’t operate this way. U.S. domestic 
diversified funds have 77 positions (median) and the top 10 holdings represent just 
over one-quarter of the portfolio (median). Further, 35 percent of mutual funds have 
100 or more positions and a 94 percent median correlation with the S&P 500 Index. 
Whether attributable to incentives or suboptimal strategy—and we suspect both are at 
play—most active managers do little to distinguish themselves.   
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The Mean/Variance Way 
 
So how best to allocate capital, either across asset classes or within an asset class? The classic 
answer comes from the concept of mean/variance efficiency, first formalized by Harry Markowitz 
in 1952. 3 The premise is that risk and reward are related linearly (see Exhibit 1). The mean is the 
average arithmetic return from an asset or portfolio. Variance measures how spread distribution 
points are from the average.  
 
Exhibit 1: Mean/Variance Model of Risk and Reward 
 

 
Source: LMCM. 
 
A risk averse investor seeks the highest return for a given level of risk. For all portfolios with a 
given level of risk, the investor will select the one with the highest return. And for an assumed 
level of return, the investor prefers the one with the least risk. No optimal portfolio exists since 
different individuals have different risk preferences, but portfolios away from the efficient 
frontier—the best reward for a given level of risk—are suboptimal. Mean/variance is powerful 
because if you specify the function that accurately expresses your utility, you can find a portfolio 
that’s right for you.   
 
But what if you ask the asset allocation question a different way: How do you maximize the 
likelihood that you’ll have the most money at the end of a particular period? As it turns out, 
mean/variance doesn’t answer that question.  
 
Shannon, Chance, and The Kelly Criterion 
 
Bell Labs scientist Claude Shannon is well known for developing information theory—essentially, 
the necessary properties and systems for transmitting intelligence. Before Shannon, most 
engineers tried to understand the information problem by focusing on a message’s meaning. 
Shannon’s insight was that information is related to chance. As author William Poundstone notes, 
“Information exists only when the sender is saying something that the recipient doesn’t already 
know and can’t predict. Because true information is unpredictable, it is essentially a series of 
random events like spins of a roulette wheel or rolls of a dice.” 4 
 
As an example, Poundstone points to a television commercial depicting a wife asking her 
husband to bring home “shampoo.” The husband, misunderstanding her, shows up with “Shamu,” 
the killer whale. Neither the wife’s request nor the husband’s misunderstanding is surprising. The 
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commercial captures our attention because the husband acts on a highly improbable and 
unpredictable request without further information. 
  
For Shannon, the incompressible part of a message relates to its unpredictability. The less 
probable a message, the more bandwidth it requires. A request to bring home Shamu 
undoubtedly demands more bandwidth than a routine demand for shampoo.  
 
Shannon’s theory also considers equivocation—the chance the message is wrong—and shows 
you must subtract equivocation from the channel capacity to determine the information rate. More 
reliable information leads to a higher information rate for a given channel capacity. Most of the 
information channels we use today, including phones, television, the Internet, operate using 
Shannon’s ideas. 
 
What does any of this have to do with optimal bet size? Shannon’s colleague at Bell Labs, John 
Kelly, recognized another application for information theory’s ideas: gambling. 5 Information in a 
betting setting is something the market does not already know. Consistent with the idea of 
equivocation, true information is also probabilistic. 
 
Kelly imagined a system where you have an edge; a set of expectations that differs from those of 
the market. He then developed a formula, based on Shannon’s work, showing the exact amount 
of your bankroll you should bet in order to maximize your capital over the long term. Consistent 
with the theory, the maximum rate of return comes when you know something the market doesn’t.  
 
We can express the Kelly formula a number of ways. We’ll follow Poundstone’s exposition: 6 
 

                                                  f
Odds
Edge

=    

 
Here, edge is the expected value of the financial proposition, odds reflect the market’s 
expectation for how much you win if you win, and f represents the percentage of your bankroll 
you should bet. Note that in an efficient market, there is no edge because the odds accurately 
represent the probabilities of success. Hence, bets based on the market’s information have zero 
expected value (this before the costs associated with betting) and an f of zero.  
 
Let’s go back and answer our opening coin-toss question using the Kelly formula. The payoff 
scheme, a $2 win for a heads and a $1 loss for a tails, suggests 2-to-1 odds. Since we’re dealing 
with a fair coin, we know the tosses will be 1-to-1. 7 So we recognize something the market 
doesn’t: heads will show up more often than the payoff scheme suggests.  
 
Solving the formula, edge is $0.50 (expected value, or 50 percent x $2 + 50 percent x -$1) and 
odds are $2 (the amount you win if you win). The optimal amount to bet is 25 percent of your 
bankroll in each round. Said differently, betting 25 percent will lead to a greater accumulation of 
wealth, on average, than any other betting strategy. 
 

%25
00.2$
50.0$

== f  

 
Exhibit 2 shows wealth outcomes based on a range of f values for 40 rounds. Betting too little 
leaves a substantial amount of money on the table, while betting too much leads to near-certain 
ruin. The latter point bears emphasis: if there is a probability of loss, even with a positive 
expected value economic proposition, betting too much reduces your expected wealth. Such 
overbetting may have been the source of demise for a number of high-profile hedge funds. 8   
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Exhibit 2: The Kelly Formula Solves for the Optimal Betting Strategy 
 
 
   
 
 
 
 
 
      
 
    
 
 
 
 
 
 
 
Source: Vince, 16 and LMCM. 
 
Though basic, this illustration draws out two crucial points for investors of all stripes:  
 

• An intelligent investor needs an edge (a view different than that of the market); and  
• An investor needs to properly allocate capital to maximize value when an investment idea 

does appear.  
 
The Kelly formula contributes to a larger concept known as the Kelly Criterion, or Kelly system. 9 
Based on information theory, the Kelly Criterion says an investor should choose the investment(s) 
with the highest geometric mean return. This strategy is distinct from those based on 
mean/variance efficiency. Importantly, however, you can calculate geometric mean using the 
same arithmetic mean and variance from mean/variance models. 10 
 
Mathematician and investor Ed Thorp is probably the Kelly Criterion’s most visible advocate and 
successful practitioner. In the early 1960s, Thorp developed a system of card counting to improve 
a player’s odds in the card game blackjack and complemented it with the Kelly system to optimize 
wealth building. 11 Thorp went on to co-found Princeton-Newport Partners, delivering 20 percent 
annual compounded returns, with a 6 percent standard deviation, over a 20-year span via various 
investment strategies.  
 
In his book, The Mathematics of Gambling, Thorp explains the Kelly system’s attractive 
features:12 
 

1. The chance of ruin is “small.” Because the Kelly system is based on proportional bets, 
losing all of your capital is theoretically impossible (assuming money is infinitely divisible). 
Even so, a small chance of a significant drawdown remains. 

 
2. The Kelly system is highly likely to grow a bankroll faster than other systems. Provided 

comparably attractive opportunities continue to appear, there is a high probability the 
system will generate a bankroll that exceeds other systems by a determinable multiple.  

 
3. You tend to reach a specified level of winnings in the least average time. If you have a 

financial end goal in mind and continuous opportunities, the Kelly system will likely allow 
you to achieve the objective in a shorter time than other systems. 

 
In short, the Kelly system has proven to be both theoretically sound and useful for practitioners. 
Still, the most enthusiastic supporters for the approach (information theorists, mathematicians, 
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gamblers, and traders) do not include mainstream economists. We now turn to some of the more 
practical constraints with the Kelly system, and we contrast the Kelly system with mean/variance 
efficiency. 
 
Practical Considerations with the Kelly Criterion and Mean/Variance  
 
Under ideal conditions the Kelly Criterion is clearly a powerful concept. Using the Kelly formula’s 
optimal betting strategy in our coin-toss example is unquestionably valuable. The real world, 
however, presents a great deal more complexity than a coin toss or blackjack table. In the stock 
market an investor faces many more outcomes than a gambler in a casino. That said, the Kelly 
Criterion works well when you parlay your bets, face repeated opportunities, and know what the 
underlying distribution looks like.  
 
We now take a look at these conditions, using the opportunity to compare the Kelly Criterion to 
mean/variance efficiency. 
 
Parlaying bets. You can approach financial opportunities with one of two betting strategies: bet 
the same amount each time or reinvest your winnings. As it turns out, what you look for will be 
very different based on which strategy you select. 
 
Kelly recognized this, writing: “suppose the gambler’s wife allowed him to bet one dollar each 
week but not to reinvest his winnings. He should then maximize his expectation (expected value 
of capital) on each bet.” 13 In other words, if you employ the first strategy, you should focus on 
average payout calculated with the arithmetic mean. In this case, the mean/variance approach is 
the way to go. 
 
In contrast, the Kelly Criterion assumes you parlay your bets, and says you should choose the 
opportunities with the highest geometric means.  
 
As an illustration of the difference between arithmetic and geometric returns, consider the 
following stock price changes (this may be reminiscent of the late 1990s and early 2000s): 
 
    T0  T1            T2 

$100   $200  $20 
 

What is the arithmetic average return from T0 to T2? The answer is simply the sum of the changes 
(100 percent + -90 percent = 10 percent) divided by the number of periods (2). The arithmetic 
average is 5 percent (10 percent/2).  
 
In contrast, the geometric average is the product of the changes (2.0 x .1) to the Nth root (2) 
minus 1.     
 

%3.5511.00.2 −=−×=  
 
In this case, the arithmetic average shows 5 percent while the geometric average is negative 55 
percent. Notably, the geometric mean is always less than or equal to the arithmetic mean. The 
greater the variance, the larger the difference between the arithmetic and geometric mean. 
Additionally, if a series contains a single payoff of zero, the geometric mean is always zero. Play 
a game with a zero payoff long enough and you are assured ruin.  
 
Exhibit 3 reproduces three series of payoffs with varying arithmetic returns, variances, and 
geometric returns that Poundstone uses in Fortune’s Formula: 
 
 
 
 
 



 Legg Mason Capital Management 
 

Page 6  

Exhibit 3: Payoff Series Including Mean and Variance 
 

Probability Payoff Probability Payoff Probability Payoff
50% 1.00$      50% 2.00$      50% 3.00$      
50% 2.00$      17% -$        50% 0.50$      

17% 1.00$      
17% 3.00$      

Arithmetic mean 1.50$      1.67$      1.75$      
Variance 0.30$      1.07$      1.88$      

Geometric mean 1.41$      -$        1.22$      

A B C

 
 
Source: Poundstone, 198. 
 
If you bet the same amount every time, like Kelly’s once-a-week gambler, you should focus on 
the arithmetic means. Mean/variance doesn’t determine the best series because individuals may 
have different preferences. Both the risk and returns rise for these series as you move from left to 
right. Determine your risk preference and you can settle on the best strategy for you. Clearly, 
though, the highest expected payoff is with series C. 
 
In contrast, the parlay bettor using the Kelly Criterion will always choose series A. According to 
Poundstone’s calculation, starting with $1 and reinvesting profits each week for a year leads to an 
expected fortune of over $67 million. The same strategy with series C amasses an expected 
value of just under $38,000.  
 
Series B has a favorable arithmetic mean, but the geometric mean is zero. This happens because 
one of the payoffs is zero, which means you will lose all of your money with this strategy given 
enough trials.     
  
Leaving aside the technical details of the Kelly Criterion, the central message for investors is that 
standard mean/variance analysis does not deal with the compounding of investments. If you seek 
to compound your wealth, then maximizing geometric returns should be front and center in your 
thinking. 
 
Repeated trials. Both the Kelly Criterion and mean/variance approaches assume lots of trials, or 
financial propositions. The probabilistic nature of most market-based financial propositions means 
you need a substantial number of observations to reasonably assure you capture the system’s 
signal, versus short-term noise. 
 
Know the distribution. Long-term stock market investing differs from casino games, or even 
trading, because outcomes vary much more than a simple model suggests. Any practical money 
management system faces the challenge of correcting for more complicated real-world 
distributions. 14 
 
Substantial empirical evidence shows that stock price changes do not fall along a normal 
distribution. 15 Actual distributions contain many more small change observations and many more 
large moves than the simple distribution predicts. These tails play a meaningful role in shaping 
total returns for assets, and can be a cause of substantial financial pain for investors who do not 
anticipate them. 
 
As a result, mean and variance insufficiently express the distribution and mean/variance can at 
best crudely approximate market results. Notwithstanding this, practitioners assess risk and 
reward using a majority of analytical tools based on faulty mean/variance metrics. 
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So the mean/variance approach has two major strikes against it. First, it doesn’t work for parlayed 
bets (even though most investors do reinvest). Second, it doesn’t consider the verity of non-
normal distributions. Yet most mainstream economists still argue that maximizing geometric 
returns is the wrong way to allocate capital. Why?   
 
Neoclassical Economic Objections to the Kelly Criterion 
 
One of the most vocal critics of geometric mean maximization happens to be one of the most 
well-known and well-regarded economists in the world: MIT’s Paul Samuelson. Poundstone notes 
that Samuelson likes to describe the Kelly Criterion as a fallacy. In a 1971 paper on the topic, 
Samuelson provides a theorem and what he calls its false corollary: 16 
 

Theorem: If one acts to maximize the geometric mean at every step, if the period is 
“sufficiently long,” “almost certainly” higher terminal wealth and terminal utility will result 
than from any other decision rule.  
 
From this indisputable fact, it is tempting to believe in the truth of the following false 
corollary: 
 
False Corollary: If maximizing the geometric mean almost certainly leads to a better 
outcome, then the expected utility of its outcomes exceeds that of any other rule, 
provided T is sufficiently large.  
 

How do economists reconcile the apparently conflicting ideas that maximizing geometric mean 
will almost certainly result in higher wealth (theorem) with the notion that this approach is possibly 
inferior to other strategies (corollary)? 
 
Perhaps the clearest explanation of the mainstream economics case comes from Mark 
Rubinstein.17 First, he notes the geometric mean maximization strategy does not assure that you 
will end up with more wealth than other strategies. Since the approach is based on probability, 
there remains a very small chance an investor will do poorly. This low-probability, high-impact 
scenario may violate an individual’s utility function. 
 
Second, success of geometric mean maximization depends on investors staying in the market for 
the long run. If an investor needs access to the funds in the near-term, the benefits of 
compounding do not apply. 
 
Third, the system assumes the investment payoffs remain steady and the investment 
opportunities set is large enough to accommodate a rising asset base. Shifting investment 
payoffs undermine the system. 
 
Finally, Rubinstein invokes the macro-consistency test: to judge a strategy’s superiority, ask what 
would happen if everyone tried to follow it. His point is all investors cannot apply the geometric 
mean strategy successfully. 
 
So who’s right, the Kelly camp or the Samuelson camp?  
 
One way to understand the difference of opinion is to distinguish between normative and positive 
arguments. Normative arguments stem from a view of how the world should be, while positive 
arguments reflect how things are and will likely be in the foreseeable future. Economists dismiss 
the strategy of maximizing geometric means based on a normative argument. Investors should 
have specific utility functions and act consistently with those functions. Since the small chance of 
a large loss will violate an individual’s utility function, geometric mean maximization is not right for 
everyone (Rubinstein’s first point). 
 
A positive argument is based on how people actually behave. Very few people take the time to 
quantify their utility functions, and those functions shift over time and with varying circumstances. 
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Most investing decisions are made by professional investment managers who must serve a 
diverse group of fund holders. Thorp notes that when he explains the Kelly Criterion to investors 
they say, “Yeah, sounds good to me, I want that.” 18 
 
Economic historian Philip Mirowski gives a more scathing denouncement of the economic field. 
He suggests economists have little interest in what people really do—that’s more the realm of 
psychology, and they don’t add much when suggesting how people should act. He writes: 19 
 

[N]eoclassicals have wavered between claiming that they were describing actual 
behavior and claiming that they were prescribing what rational behavior should be. Their 
contempt for psychology has always given lie to the first claim, so of necessity, they have 
eventually retreated to the second. This second position is untenable, however, because 
it conflicts with the ideology of the scientist as a detached and value-neutral observer as 
it commits the transgression of defining rationality in a post-hoc manner in order to 
conform to the mathematical model of utility. (Emphasis added.) 

 
There are two other problems with utility theory and investing. The first comes from the father of 
mean/variance analysis, Harry Markowitz. In his famous Portfolio Selection, Markowitz advocates 
the geometric mean maximization approach. In spite of arguments by Jan Mossin (one of the 
founders of the capital asset pricing model) and Samuelson in the 1960s, Markowitz reconfirmed 
his endorsement of the geometric mean maximization strategy in the preface to his second 
edition published in 1970. Markowitz suggests utility-maximizing man “acts absurdly” over the 
long term: 20   
 

I concluded . . . that the investor who is currently reinvesting everything for “the long run” 
should maximize the expected value of the logarithm of wealth. Mossin and Samuelson 
have each shown that this is not true for a wide range of functions relating to utility of 
wealth at the end of the last period, T. The fascinating Mossin-Samuelson result, 
combined with the straightforward arguments supporting the earlier conclusions, seemed 
paradoxical at first. I have since returned to the view . . . that for large T, the Mossin-
Samuelson man acts absurdly, like a player who would pay an unlimited amount for the 
St. Petersburg game . . . the terminal utility function must be bounded to avoid this 
absurdity; and the [maximization of mean geometric return] argument applies when utility 
of wealth is bounded.  

 
The second problem comes from Kahneman and Tversky’s prospect theory. Utility theory 
considers gains and losses in the context of the investor’s total wealth (broad frame). In contrast, 
prospect theory considers gains and losses versus isolated components of wealth, like changes 
in a specific stock or portfolio price (narrow frame). Experimental studies show that investors use 
price, or changes in price, as a reference point when evaluating financial transactions. Investors 
pay attention to the narrow frame. Utility theory does not explain how people behave. 21 
 
Even if you agree the utility argument is not persuasive enough to suggest abandoning the Kelly 
strategy, Rubinstein makes some points worth considering carefully. For a geometric mean 
maximization system to work, an investor has to participate in the markets over the long term. In 
addition, the portfolio manager must be able to systematically identify investment edges—points 
of view different than that of the market and with higher expected returns.  
 
Finally, since by definition not all market participants can have an edge, not all investors can use 
a Kelly system. In fact, most financial economists believe markets to be efficient. For them, a 
discussion of optimal betting strategy is moot because no one can systematically gain edges. 
 
Based on our observations of behavior, portfolio structure, and incentives, we conclude that very 
few investors are organized to take advantage of the principle of mean geometric return 
maximization. Here’s why. 
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Why Many Money Managers Focus on Arithmetic Returns 
 
As we noted, geometric mean maximization requires an investor to be in the market over the long 
haul. If capital is free to come and go, however, as is the case with an open-end mutual fund, the 
portfolio manager may not have the luxury of thinking long-term. Even if geometric mean 
maximization is the best way to go, market realities may compel a short-term focus.  
 
The reasoning is straightforward: an open-end portfolio with poor short-run performance faces the 
very real prospect of losing assets. In turn, portfolio managers have a strong incentive to focus on 
the investment ideas they perceive will do well in the short term, even at the expense of ideas 
offering higher rates of return over the long term. Geometric mean maximization simply does not 
make sense for a portfolio manager in this short-term mindset. 
 
If an open-end fund structure encourages this short-term perspective, why aren’t more funds 
closed-end? (The assets in open-end mutual funds are 25 times larger than those in closed-end 
funds.) The obvious first answer is that investors don’t want to lock up their money; they prefer 
the flexibility to reallocate capital in the case a portfolio manager performs poorly.   
 
But Jeremy Stein argues the dominance of open-end funds reflects both the preference of 
investors and the desires of the mutual fund companies. 22 In a closed-end fund, changes in asset 
level are solely a function of results. In contrast, in an open-end fund the potential for inflows 
balances the risk of outflows. Most fund managers recognize that the upside of positive flows, 
especially if results are good, more than offsets the risk of outflows. 
 
Many fund companies understand the best way to favorably tilt the inflow/outflow equation is to 
operate within the near-term consensus; the focus shifts to delivering acceptable results over 
sequential short-term periods, even at the cost of higher, albeit lumpier, long-term returns. The 
high portfolio turnover rate (averaging around 100 percent in the last couple of years) we see 
supports this view. In case after case, short-term incentives discourage portfolio managers from 
adopting the Kelly system. 
 
Loss Aversion and the Kelly Criterion  
 
Poundstone highlights another important feature of the Kelly system: the returns are more volatile 
than other systems. While the Kelly system offers the highest probability of the most wealth after 
a long time, the path to the terminal wealth resembles a roller coaster. The higher the percentage 
of your bankroll you bet (f from the Kelly formula) the larger your drawdowns. 
 
Another important lesson from prospect theory—and a departure from standard utility theory—is 
individuals are loss averse. 23 Specifically, people regret losses roughly two to two and a half 
times more than similar-sized gains. Naturally, the longer the holding period in the stock market 
the higher the probability of a positive return because stocks, in aggregate, have a positive 
expected value. Loss aversion can lead investors to suboptimal decisions, including the well-
documented disposition effect.  
 
Investors checking their portfolios frequently, especially volatile portfolios, are likely to suffer from 
myopic loss aversion. 24 The key point is that a Kelly system, which requires a long-term 
perspective to be effective, is inherently very difficult for investors to deal with psychologically. 
 
It is possible to reduce the strategy’s volatility by taking partial Kelly positions. Naturally, these 
positions also reduce expected return.  
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What Does All This Mean for Equity Portfolio Management? 
 
So what lessons should equity investors draw from this discussion? A few points emerge: 
 

• Edge is key. Recall the foundation of Kelly’s model rests on having a view that is 
different, and more correct, than that of the market. Having an edge requires 
understanding the market’s perspective. As Poundstone writes, “The stock ticker is like a 
tote board. It gives the public odds. A trader who wants to beat the market must have an 
edge, a more accurate view of what bets on stocks are really worth.” 25 

 
One way for equity investors to think about edge is finding situations where the stock’s 
rate of return is likely to be higher than the market anticipates. A stock’s excess rate of 
return is a function of its percentage discount to fair value—the margin of safety—and 
how long it takes the market to close the price-to-value gap.  

 
• Greater opportunity suggests a larger bet. Finding an edge only gets you part of the way 

to maximizing long-term wealth. Appropriately sizing the position is the other part. A 
distinct minority of investors are skilled at position sizing, while most investors—again, 
generally reflecting agency costs—are satisfied to perform in line with their investment 
benchmark. One good, albeit convenient, example of the first group is Warren Buffett. In 
the mid-1960s, Buffett allocated close to one-quarter of his assets into one stock, 
American Express, when he was convinced the security offered superior return 
prospects. Note, too, that Berkshire Hathaway is essentially a closed fund.  26  

    
• Mean/variance is not the best way to think about maximizing long-term wealth if you are 

reinvesting your investment proceeds. If you face a one-time financial decision, you want 
to maximize your arithmetic mean. But with repeated favorable opportunities—either 
through time or diversification—chances are you will do better in the long term by 
maximizing geometric mean. Mean/variance may be deeply embedded in the investment 
industry’s lexicon, but it doesn’t do as good a job at building wealth as a Kelly-type 
system.  

 
• Applying the Kelly Criterion is hard psychologically. Assuming you do have an investment 

edge and a long-term horizon, applying the Kelly system is still hard because of loss 
aversion. Most investors face institutional and psychological constraints in applying a 
Kelly-type system. 
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The views expressed in this commentary reflect those of Legg Mason Capital Management 
(LMCM) as of the date of this commentary. These views are subject to change at any time based 
on market or other conditions, and LMCM disclaims any responsibility to update such views. 
These views may not be relied upon as investment advice and, because investment decisions for 
clients of LMCM are based on numerous factors, may not be relied upon as an indication of 
trading intent on behalf of the firm. The information provided in this commentary should not be 
considered a recommendation by LMCM or any of its affiliates to purchase or sell any security. To 
the extent specific securities are mentioned in the commentary, they have been selected by the 
author on an objective basis to illustrate views expressed in the commentary. If specific securities 
are mentioned, they do not represent all of the securities purchased, sold or recommended for 
clients of LMCM and it should not be assumed that investments in such securities have been or 
will be profitable. There is no assurance that any security mentioned in the commentary has ever 
been, or will in the future be, recommended to clients of LMCM.  Employees of LMCM and its 
affiliates may own securities referenced herein.  
  
You should consider a fund's investment objectives, risks, charges, and expenses 
carefully before investing. For a prospectus, which contains this and other information on 
any Legg Mason fund, call your Financial Professional, call 1-800-577-8589, or visit 
www.leggmasonfunds.com. Please read the prospectus carefully before investing. 
 
Legg Mason Investor Services, LLC, Distributor - A Legg Mason, Inc. subsidiary 
 
Investment Products: Not FDIC Insured, Not Bank Guaranteed, May Lose Value 
 
Legg Mason Capital Management is the investment advisor and Legg Mason Investor 
Services, LLC is the distributor of five of the Legg Mason Funds. 


