EasyLanguage Essentials

Programmers Guide

ii EasyLanguage Essentials Programmers Guide

Important Information and Disclaimer:

Thisbook discusseshow TradeStation Easyl anguage allowsyouto devel op and implement custom indicators
and trading strategies. However, neither TradeStation Technologies nor its affiliates provide or suggest any
specificindicator or trading strategies. We offer unique toolsto help you design indicators and strategies and
measure how they could have performed in the past. While we believe thisis very valuable information, we
caution you that simulated past performance of atrading strategy isno guarantee of its future performance or
success. We also do not recommend or solicit the purchase or sale of any particular securities or securities
derivative products. Any securities symbols referenced in this book are used only for the purposes of the
demonstration, as an example ---- not a recommendation.

Finally, thisbook may discusstopicsrelated to automation of trading strategies. Please note that even though
TradeStation has been designed to automate trading strategies, accessto the Internet, real-time data, and trade
serversmay at timesbe delayed or even fail dueto market volatility, quote delays, system and software errors,
internet traffic, outages and other factors.

All proprietary technology in TradeStation isowned by TradeStation Technologies, Inc. The order execution
services accessible from within TradeStation are provided solely by TradeStation Securities, Inc. (an affiliate
of TradeStation Technol ogies) pursuanttoatechnology licensefromitsaffiliateanditsauthority asaregistered
broker-deal er and futures commi ssion merchant. All other featuresand functions of TradeStation are provided
directly by TradeStation Technologies. TradeStation and EasyL anguage are registered trademarks of
TradeStation Technologies, Inc. "TradeStation," as used in this document, should be understood in the fore-
going context.

Published by TradeStation Securities, Inc.
Copyright © 2007 TradeStation Securities, Inc. All rights reserved.
While every precaution has been taken in the preparation of this book, TradeStation Securities assumes no

responsibility for error or omission, or for any damages resulting from the use of the information contained
herein.

EasyLanguage Essentials Programmers Guide

Audience

Thisbook has been designed with the beginning EasyL anguage programmer in mind. Our goal with this book
isto provide useful information to anyone interested in learning more about the features and uses of TradeS-
tation EasyLanguage. The primary audience for this materia is traders and devel opers of technical analysis
indicators and trading strategies.

Experiencein any other programming languageishel pful butisnot requiredtolearn and utilize EasyL anguage.

About This Book

Easyl anguage Essential sProgrammersGuideisaprogrammersintroductionto TradeStation’ s Easyl anguage
programming tools. This book is based on the current release of TradeStation 8.3.

It is assumed that the reader has access to the TradeStation platform.

The book is divided into severa chapters and appendixes each designed to familiarize you with the basic
concepts and principles of Easyl anguage programming.

Although the book is comprehensive, it not designed to answer every question you may have about Easyl an-
guage, and is not a complete reference guide. There are many additional on-line resources available that can
help answer those issues not covered in the book.

Visit the TradeStation Support site at: www.tradestation.com.

EasyLanguage Essentials Programmers Guide

EasyLanguage Essentials Programmers Guide

Table of Contents

= =T SRS 1
What ISEaSYLanQUAgE?ccceeeerieeiee e seesee s e se e e s e teeste e see e enee s 1
Compatibility with PreviouS VErSIONS.........cooovviiieiereseeeeeee e 2
Forward CompatibDilityccceovrirerieirirere s 2
Backward CompatibDility..........ccoereiririneseseseee s 2
3rd Party Development Platform..........ccceeceveie e 2
= o U) YU 2

a8 0o [T f oo SR P 3
Analysis Applications: Chart Analysis, RadarScreen, and OptionStation...... 3
NamMiNg CONVENLIONS.......c.cciiiiiceerie ettt st e e e n e 3
TEXE CONVENLIONS......eciiiieiiriiriisieeee sttt ettt sttt ae e 4
EXample CONVENLIONS.........ccoeieeieerecsee e sre e re e see e s enne s 4

Program StEUCLUI €....cieee et s 5
ol 0] o< P RS TTPPTPRARPR 5
Calculation ProCEAUIES.........ccciiiriieieiesie et 5
MAXBarSBaCKccuririeiriiriiieiecse e 6

Charting BASICScciveiiieeieeiesee e esee e e et e st ae e ae e reeaesnaenneennens 8
Data INTEIVEAIS.......oeeeeee et 8
Bar Attribute Reserved WOrdS ..o et e 8
T 1N o PRSPPI 8
BarNTErVal ... s 9
CUIMENEBAN ... e 9
BarNUMDET ... 9

Price Data EIements...........ccooveeiiicii i 10
Bar Price Data POINES........ccceiiirieieirisiesie st 10
Trade Volume, Tick Count, and Open INterestcccveevevieveceeeesesennns 10
Bar Volume Data POINES..........coeiieieierieeiceese et 10
Option Volume, Option Open Interest, and Implied Volatility.................... 11
Option Volume Data POINES.........ccoeieieeeecese e 11
Time and Date Data POINtS..........c.ccceieeiiieiie et 12
QUOLE FIEITS......cceeeceecte ettt ettt 13
FUNBMENLEI DELAL........eeeeeerieiireeeeese e 14
GEIFUNADE@LAL......cee et 14
Available Fundamental Data FieldS..........ccooovivienceneneceeee e 14

MUt -Data ANBIYSIS ..ottt eneas 15

EasyLanguage Essentials Programmers Guide

SESSION INFOMMELION......c.eiieiieiisie e 16
POWEN EQITON ... e 17
Creating aNew AnalySiISTeChNIQUE.........cocviieeeeeee e 17
SUAY FIlE TYPES. ...ttt 18
SYNEEX COlOMNG .ttt bbb 19
RV = 1SS 19
EasyLanguage OULPUL Bar..........cocuveieieiee e 20
Analysis TeChNiQUE PropertieS........cccveeieereeie et 21
Analysis Technique Properties Tabs........cccvovieeeerene e 22
EasyLanguage DiCliONAIYcccoeveeeireninieiesesie st 23
PowerEditor Window Preferences ..o vieveeceenene e 24
EasyL anguage PowerEditor DebUgQET.........cccovveeevieii i 25
BreakPOINL ..ot st 25
Language ElEmMENtS........ccooveiiieceee et 27
g Tox 11 7= 1o S 28
1001 = (0] £ SRS 30
MathematiCal OPEraLOrS.........cccveiviiieeeeiesi et e 30
Relational OPEralorsS.........ccvveeieeieesecsee e e se s ese e e e e e esre s 31
(oo Lo @ o< = (0] 1= R 32
Precedence-Order Of OperationsS.........cccooveieeererereere e e 32
RESENVED WOKTS......coviiiieieeeie ettt neas 33
CONSLANES ...t r e sr e r e b e ar e 34
SKIPWOIAS ...ttt st 34
ATIDULES ... e 34
EasyLanguage FUNCLIONS...........ccoceiriiieeee e 35
EasyL anguage StatementScoocveviien e s 36
DECIAIAION ...ttt ettt ene s 36
107010 1SR 37
VA= = o = R 38
Variable ASSIGNMENTc.ooiiieie et 38
Understanding Variable TYPES......c.coviieeerereneeeeere e 39
Pre-Declared Variables.........ccoecveieviieeeeese e 39
F N = V£ TSRS 40
DYNAMIC ATTAYS...ccuviteitieieieete st eeerie e e e ste s e e ssesbesaeessestesbesneeneeseesrennes 42
Variable Calculation and StOrage.......cccceveeveereereere e see e 42
IntrabarPersist Variables and Arrays........cccooeeeeeerenenene e 43
NUMEITC TYPES ...ttt sttt e e e e sneeneeseeseeees 43
Historical Reference of Variables........cccceeivvivceecenes e 44
VariahleS @S COUNLENS.......c.ccirieiriiriesieie e 45
Setting and Holding Variables Conditionally..........cccccevvvvereevenencieeree 45

Conditional BranChing.........cccceieereerieeiieesesse e eree e se e see e e s 46

vii

I 4T o TSR 46
I THEN.LEISE... e 46
If...Then Begin...End (Block Statement)ccccoceeveevieciiecve e 46
If..Then Begin...End Else Begin...ENd........ccccoooirieiiiiiineee e 47
ONCE...BEQIN...ENG......ciiiiiice e 47
SWITCH/CBSE. ... ettt et e snenne e 48
= g1 o] USRS 49
0] g 0T o SR 49
ATAY o TH = oo o S 50
REPESL/UNLH LOOP. ...ttt 50
INFiNite LOOP DELECHION.cveeieiieieeeeiesee e 50
OULPUL e r e 51
PlLOt SEALEMENT ...t s 51
PlLOt REFEIENCE...... e 52
PLOIPB ...ttt b e re et nnan 52
INOPLOL ..ttt eae st nn e 53
Displating PlOtS.....c.coiiiiiiice ettt 53
Conditional PIot FOrMatingcccovveerrieriiee e e e e st eie e esee e s 54
16 MillION COlOrS.....eieieeeeeee et 55
COlOr GratieNtS.cceeieireeeeee ettt eseeseeeeeeneeeen 55
Legacy Predefined COlOrS..........coviiiieieiisesieeeese e 56
Alertsin EasyLangUage........cccccceiviieeeeese ettt 57
CRECKAILEIT ...t 58
Enabling the Alert in the WIindow ..o 58
Print SEEEEMENT.......c.eoie e 59
EasyLanguage Output Bar - Print LOG........cceoererereeiere e 59
110 (o 1 T = PP 60
L FSY A o] = o S S 60
FIHE DEIELE. ...t bbb 61
ANAlYSIS COMMENTAIYccveieeiieiieesee e s e e ste e et e te e e e e seesaesnaenneeas 61
COMMENEAIY ...ttt st ae b e e b e b e e b e e sneene e 62
Commentary and HTMLoooiiieee e 62
CommON HTML fUNCLIONSociiieeeiese e 63
ALCOMMENTAIYBANcoiiiiiiiie e 64
CommentarYEN@bl€...........oooeiieieiicese e 64
Multimedia and EaSyLangUagE...........c.cceeuvrerrieriieeiee e seesee s seeesieeneeeneeens 65
PlaySOUNG ..ottt e et sne e 65
Play IMOVIES ...ttt st e e e e s aeeneeneesneene e 65
Play MOVIEe EXBMPIESc.oiiiiiirierieee et 66
Creating INGICALONS........ooiiiiirieeeeee e 67

INAICALOr BASICS....uvveieeiieieeieieee e eeeeteeee e e se et et e e sssasbereeessesssbereeessesassrereeessesanns 68

viii

EasyLanguage Essentials Programmers Guide

INdiCator TEMPIAES........ccecececeeee e 68
Indicator Naming CONVENLIONS.........c.cccueveeiieeieereeseeseesre et seeesee e e 68
Determining Application Availabilityccccoeveviniievie e 68
INdicator COde SITUCIUNE..........eeeeeeeee et 69
Standard Code SITUCLUE.........ceeveieeereere e 69
MUIti-Data INiCALOISeevereecieeeee ettt nees 71
Multi-Data REFEIENCE.......ceviriiieereree e 72
DL =) SRS 72
Indicator Propertiesin the POWErEQItOrc..ccccoeevercevcee v 73
Creating a SNOWM E SEUAYc.veeuveiiieiececeee e 75
Creating a PaintBar StUAYcccooeieiiriniieneseeeeeeee e 77
Creating Trading Strat@gi€Sccevveveeeieeiesie e 79
AT T e B L= =0 | 79
Strategy Order SYNTAXcoerereeirireriereeesese e 80
Strategy Enging CalCUlationScceveveiieeiese e 81
INtra-bar Order GENEration............coeeirerieieisesee e 82
Basic Strategy Code SLHUCKUNE.........ccuveieereere e 83
SIGNAl NBIMIES......ccueeieiiirieee ettt nn s 84
Setting Trade Sizein EasyLanguage............cooeeeeerinienieieneniesieseeese e 85
OPEN NEXE B ..o 85
Strategy Position Reserved WOrds..........cccveveveiececeese e 86
Strategy Performance Reserved WOrds..........coveveievececeecene e 88
o TN L1 IS (] = 90
Symbol Attribute Reserved WOrds...........cocooeiiieieeieree e 91
Tying Entry @and EXit......c.ooo oo 93
Advanced Order Automation in EasyLanguage...........cccccevereneeieninienieinnnens e%}
TradeManager ReSEVEd WOIAS.ccoviiiecieeiecie et 96
TradeManager Position Reserved WOrdS.........cccocvveevenececcece e 98
Strategy PrOPEITIES.....ccuvcieeiecie e e et e e s reereens 100
S = 150 |V AN U 10] 0 7= 1o o R 103
Strategy Automation Synchronizationccceeevieveeeerenenieeeee e 104
U-TUMNS FOF FULUIES.......ceceeeieie ettt st 105
Send Stop Ordersto TradeStation SErVErS........ooooveveveveeeevese e seeee e 105
Creating FUNCLIONS ..ot 106
FuNction INpUt Parameters..........coeeeerereneeeese e 107
Parameter SUDLYPESeeeereeeee et s nee s 107
Function Input/Output Parameterscooeoeeerinenieiene e 108
Function Array Parameter Declaration............cccoceeeveveieseesese e 109
Function Array Input/Output Declarationcccceveveieeieeseseseeieseinns 110
Function Property Dialog in the POWerEditorcccoovevvccecceece e, 110

Function Storage and Memory Optimization..........ccocooovveeievrreneecenenens 111

Drawing ODJECEScoiiuiiiiieeeeeee e 112
LIS (RO o= £ P 112
Creating aTeXt ODJECEccoii e e 112
MOoVING @TEXE OBJECTc.coiiiiieieere e 113
RemMOVING @ TEXt ODJECToieiriereieieir e 113
Formatting Style of Text ObJECtS.........ccvceeeeveieceeeee e 113
Formatting the Color of a Text ObJeCt.........cccevvvvercecir e 114
Changing the Text Object MESSAgE.........cceveeverrieerie e 114
Getting Text ODJECt VAlUEScooieiieeeeeeeesere e 114
TEXE ODJECT EITONS......ciiiieieeeiiriese et 115
B I = 110 | 11T 116
Creating @ TrendliNgoceeee e e 116
MOVING @TIENAINE.......c.ee e e 117
Removing aTrendliNg..........cccveciiieie et e 117
Formatting the Thickness of a Trendline.........cccoovveieeienie i 117
Formatting the Color of a Trendline..........ccooeeiiieneiinneeeeeere e 118
ExtendingaTrendline Left and Rightcccoovvieveie i 118
FindingaTrendlineonthe Chart...........cccoeviieieeiese e 119
Trendline Get Info Reserved Words...........coceoeiiniieneeienec e 120
IS 00 [T T = (] = T 120

Writing Indicatorsfor Radar SCreen..........ccccceveeveececeevecce e, 121
Loading Additional Datafor Accumulative Calculations............cccccevuenen. 122
Plot Statements in RadarSCreen........covveirireneeesese e 122
ShowMes and PaintBars in RadarSCreen..........coccooevevereeiene e 122
Conditional Plot Color Styling in RadarScreen...........ccccovvveieeeeiencnennne 123
Gradient Background Cell ColOrs..........ooeiireneeieee e 123

(€7 0N o] o1 1 1 {0 TSP 124

Importing / Exporting EasyLanguage...........ccccceverenenenencnesenennens 125

Learning more about EasyLanguage...........cccceveevveieseenieceeseeseesnns 126
TradeStation SUPPOIt SITE......ccveveiriieieerese e 126

TradeStation EasyL anguage SUppOort RESOUICES.......cccoveeereeereernenne 128

N 0] 0 1= [0 | G S 129

Volume Reserved Words Usage Tablescccoeeevereveneeieere e 129

EasyLanguage Essentials Programmers Guide

Preface What is EasyLanguage? 1

Preface

What is EasyLanguage?
EasyLanguage is an easy-to-learn, but powerful, computer programming language for creating technical in-
dicators and trading strategies for the TradeStation trading platform.

EasyLanguageisdesigned by traders, for traders, to describe trading ideasto acomputer in plain English-like
expressions using trading terms and phrases traders are already familiar with. By combining common trading
terminology with conditional rulesand historical price data, EasylL anguage makesit possibleto create custom
indicators and trading strategies in a straightforward and intuitive manner.

TradeStation is powered by EasylL anguage; every built-in strategy and indicator in TradeStation iswrittenin
EasyL anguage and the programming code for each of them is easily accessible to view, copy, and modify as
needed. In addition, there are hundreds of additional EasylL anguage strategies, indicators, and functions that
arereadily available from the EasylL anguage File Library on our web site. These are free and easily imported
into TradeStation.

The types of trading and technical analysistools you can create for TradeStation are:
Indicators
ShowMe Studies
PaintBar Studies
ActivityBar Studies
ProbabilityMap Studies
Trading Strategies
Functions
OptionStation Pricing Models
OptionStation Search Strategies

TradeStation can store an unlimited number of these analysi stechniques, and allowsthe easy import and export
of EasyL anguage studies from one computer to another.

Even those traders who don't intend to write complex indicators or strategies using EasyL anguage can benefit
fromalittle EasyL anguageknowledge. Many indicatorsand strategieshaveinput parametersthat utilizesimple
EasyL anguagestatements. EasyL anguage makesit possibleto modify a ert andtrading criteriaor add additional
calculations.

2

Compatibility with Previous Versions EasyLanguage Essentials Programmers Guide

Compatibility with Previous Versions
Forward Compatibility

With some minor exceptions, EasyL anguage code written in any previous version of TradeStation should be
compatible with the current release version. The exceptions would be any reserved words or functions that
have been renamed and the older names removed from the language.

In most cases, it is possible to edit the code to reflect the new naming convention, which will correct most
versioning issues. Asapolicy, TradeStation makesevery effort to minimizelanguage changesthat would affect
EasyL anguage code written in prior versions.

Backward Compatibility

EasyL anguage code written in the current version of TradeStationislesslikely to be compatiblewith an older
version of TradeStation. Thisis dueto the fact that EasylL anguage is constantly expanding and evolving new
languageel ements. It may benecessary inthese casesto rewrite portionsof thecodeto reflect theol der language
syntax.

3rd Party Development Platform

Asthe foundation of the TradeStation trading platform, EasyL anguage provides opportunities to create add-
on products, such asindicators or trading strategies, which can be marketed to TradeStation clients. Currently
in place is anetwork of third party providers that offer a variety of EasylL anguage products and services.

Security
All EasylL anguage code resides on the local computer only and is not viewable or accessible by anyone over
the TradeStation network.

EasyL anguage code can be protected with avariety of security schemeswhich enablesdevel opersto distribute
strategies and indicators without exposing their actual Easyl anguage code.

Introduction Analysis Applications: Chart Analysis, RadarScreen, and OptionStation 3

Introduction

Analysis Applications: Chart Analysis, RadarScreen, and OptionStation
EasyLanguage is the underlying technology that drives al of the analysis techniques throughout the Trade-
Station platform. EasyL anguage studies can be written for ChartAnalysis, RadarScreen, and OptionStation.

Although the Chart Analysis window is used for most examples and discussion topicsin this book, be aware
that the underlying concepts apply equally to the RadarScreen and OptionStation windows. There are afew
minor differences and restrictions between applications which will be discussed.

Thisbook contains many short sectionsdivided into specific topicswith examples. It isimportant to recognize
that thisis not a complete reference, but covers most major topics and common language elements and con-
ventions. Web resources, the TradeStation User Guide, and the EasylL anguage Dictionary offer additional ref-
erence to specific language elements.

The book has been written for al levels of EasyL anguage developers. If you are completely new to EasylL an-
guage, you may wish to attend some live training courses, purchase the EasylL anguage Home Study Guide,
or work with the tutorials first and then use this book as a reference for specific topics.

Thebest way to learn aprogramming languageisto |ook at code examples and start writing code. Every built-
in strategy and indicator in TradeStation iswritten in EasyL anguage, and the programming codeis easily ac-
cessible to view.

Naming Conventions
Throughout the book the following naming conventions will apply:

EasyL anguage Analysis Technique or EasylL anguage Study: Refersto any Easyl anguage file type (Indi-
cator, Strategy, Function, etc.).

Indicator: Can refer to any Easyl anguage indicator file type: Indicator, ShowMe, PaintBar, ActivityBar, or
ProbabilityMap.

Chart or Chart Analysis Window: Refers to a TradeStation chart window, but be aware that the concept
being discussed may be equally valid in RadarScreen or OptionStation.

Keyword or Reserved Word: Refersto any built-in Easyl anguage syntax element.

Function or User Function: Refersto a callable procedure written in Easyl anguage.

~ or tilde: Refersto aMain Menu and dialog navigation asin:

(View~EasyL anguage Preferences~Syntax Coloring)

EL: An abbreviation for Easyl anguage.
TS: An abbreviation for TradeStation.

4

Text Conventions EasyLanguage Essentials Programmers Guide

Text Conventions
This book uses the following typographic conventions:

e Courier
Thisfont is used for Easyl anguage code and highlights a reserved word, function, or topic being dis-

cussed.

e Courier Bold
Highlights areserved word or function in the EasyL anguage code.

e Courier + Italic
This styleisused for user provided parameter items.

* Bold
This styleis used for filenames and for items emphasized in the text.

Example Conventions
There are two exampl e types in this book - concept examples and code examples:

Concept example show EL programming conventions:

Concept Examples (EL Date Format):
990320 = March 20, 1999
1001010 = October 10, 2000
1040608 = June 8, 2004

Code examples show actual EL statement syntax:

Usage Examples:
Plotl (Close) ;
Valuel = Average (Close, 20) ;
Conditionl = Close > Close[l];
Buy next bar at Close of this bar limit;

Program Structure Scope 5

Program Structure

At thehighest level, EasyL anguageis aprogramming language consisting of multiple mathematical and bool-
ean expressionsthat are processed to analyze and trade historical datain achart. Originally based on the Pascal
programming language, statements are eval uated from the top of the code down to the bottom, once for each
historical bar in a chart, and then calculated tick by tick real-time when the markets are open.

EasylL anguageisacompiled language. All EL codeiscompiled into amachinelanguagethat makes processing
faster and more efficient.

Built into EasyLanguageisalibrary of reserved words and EL functionsthat includes most mathematical and
technical indicator calculations.

EasyLanguage is built around an automatic database management system that keeps track of all the datain
the chart, as well as all historical reference to calculations or procedures within an analysis technique. This
allowsyou to concentrate on your cal culations and trading rules and not on database storage and maintenance.

Most run-time error handling is automatically done behind the scenes. When problems do occur, operations
are aborted, you are alerted with adialog, and the error is logged in the Events Log.

Scope

All calculations, datastorage, and other codereferencesarelocal to each unique EasyL anguage study filewithin
onechart window. Y ou may usethe same variable and input namesin different analysistechniques. Each vari-
able and input islocal to the analysis technique in which it is declared.

There are no built-in global variables in Easyl anguage, however, an external program (dll) may accomplish
thisif needed.

Calculation Procedures
Before you start writing analysis techniques in Easyl anguage, it is important to review how Easyl anguage
operates and calculates on historical and real-time data.

In TradeStation, a chart typically consists of a number of bars built from price data for a specified symbol.
Each bar summarizes the price action for a specified trading interval, most commonly atime period such as
five minutes or daily. Each bar contains the data val ues open, high, low, and close. Each bar may also contain
data for volume, option volume, implied volatility, and open interest (depending on the symbol). Each bar
also has a date and time stamp.

Y ou can al so specify the amount of historical datato load into the chart. The amount of dataloaded is another
factor that may affect indicator values and strategy back-testing.

Typically, an Easyl anguage analysistechnique includes some number of statements, each of which can result
in an action such as plotting a line on the chart or generating a buy or sell short order. All of the statements
in Easyl anguage are processed once for each historical bar, starting from the first bar in the chart.

MaxBarsBack EasyLanguage Essentials Programmers Guide

An analysistechnigueisthen processed across the chart from left to right for each bar on the chart until it gets
tothelast bar inthechart. If thelast bar inthechartisthecurrent real-timein-progressbar, theanalysistechnique
can be set to calculate on each new trade tick that comes across the datafeed, or can be set to calculate only
when the bar closes.

EasyL anguage always thinks and calculates in bars, not in days or minutes or ticks. The type of chart you
build determines the calculation analysis. A 10-bar moving average can be based on ten 1-minute bars or ten
daily bars.

Note: Y ou should have ageneral knowledge of charting in order to maximize your effortsin EasyLanguage,
includeing: how to create charts, modify intervals, and how to load additional historical data.

MaxBarsBack

Any analysis technique that references historical data will require a certain number of historical bars before
it can start calculating. Thisrequired starting datais called the "Maximum number of bars a study will refer-
ence," also known as MaxBarsBack. For example, a10-bar moving average would require aMaxBarsBack
setting of 10 to begin calculating, which is 9 historical bars and the current calculation bar.

Easyl anguage indicators can automatically calculate the MaxBarsBack setting; thisis an indicator property
setting. By default, most indicators are set to Auto Detect. However, strategies have afixed user-defined Max -
BarsBack setting; this value can be set in the Strategy Properties dialog. By default, strategies have an ar-
bitrary MaxBarsBack value of 50.

Program Structure MaxBarsBack 7

TradeStation Chart Analysis - SPY Daily [A... [8-][1-][2|B|X]
SPY - Daily AMEX L=121.94 -0.29 -0.24% B=121.94 A=121.95 0=121.95 ..

-112.00
-110.00
-108.00
-106.00

~104.00

|

Moving Average Indicator with a 9-bar length

Note: The indicator at the beginning of the chart does not plot until there are enough bars for the calculation.

If therearenot enough historical databarsto satisfy theMaxBarsBack Setting, you may need to add additional
historical bars to the chart.

Whenworkingwith strategies, makesurethat MaxBarsBack isset tothemaximum historical referencewithin
the strategy, including any additional bars that may be required for optimization.

When an analysis technique is applied to a multi-data chart, each data set must meet the MaxBarsBack re-
quirement individually before any calculations are generated.

8 Data Intervals EasyLanguage Essentials Programmers Guide

Charting Basics

Data Intervals

The terms Data Interval, Bar Interval, and Data Compression, al refer to the Data I nterval for each bar
inachart. Itistheamount of time or trading activity used to determinewhen abar ends and another bar begins.
Most traders are familiar with daily bar chartsin which the interval for each bar is one day.

Here are the available data intervals:

Non-time based I ntervals:
Tick Bars - values can range from 1 to 4095.
Volume Bars - values can range from 1 to 500,000,000.

Time based Intervals:
Intra-day Minute Bars - values can range from 1 to the number of minutesin the trading day.
Daily, Weekly, or Monthly Bars - no interval setting is required.

Note: Chart Analysis also allows you to create Point & Figure charts.

Bar Attribute Reserved Words

The Charting application keepstrack of bar attributes and makes thisinformation avail able through reserved
words. Bar attribute information includes bar type, bar interval and bar number. These words allow usto de-
termine the type of barsthat are in the chart, what bar interval valueis being used, and which bar in the chart
isbeing calculated.

BarType
BarType isan EL reserved word that allows you to determine the type of barsin the chart from within your
analysis technique.

BarType returnsanumeric value that represents the bar interval type of the chart:
0 =Tick Bar or Volume Bar
1 = Intraday Minute Bar
2 =Daily Bar
3 = Weekly Bar
4 = Monthly Bar
5=Point & Figure

Usage Example:
Plotl (BarType) ;

In this example, BarType plots the bar interval type in the chart.

Charting Basics Barlnterval 9

Barinterval
BarInterval isan EL reserved word that allowsyou to determinethebar interval valuefor intra-day charts
from within your analysis technique.

BarInterval returnsanumeric value that represents the intra-day interval value.
Usage Example:

if BarType < 2 then
Plotl (BarInterval) ;

In this example, if the chart interval is set to 15 min, then BarInterval will plot 15.

CurrentBar

CurrentBar isan EL reserved word that allows you to determine the number of the bar that is currently
being calculated. Starting with the first calculation bar after MaxBarsBack, each bar is assigned a number
starting at 1.

CurrentBar returnsthe number of the current calculating bar in the chart.

Usage Example:
Plotl (CurrentBar) ;

In this example, CurrentBar plotsthe bar number for each bar.

BarNumber

BarNumber isan EL function that allows you to determine the number of the bar that is currently being cal-
culated. Starting with thefirst cal culation bar after MaxBarsBack, each bar isassigned anumber startingat 1.

BarNumber returns the number of the current calculating bar in the chart.

Usage Example:
Plotl (BarNumber [1]) ;

In this example, BarNumber [1] plots the bar number of the prior bar for each bar.

Note: BarNumber isfunctionally thesameasCurrentBar. Theonly differenceisthat BarNumber can
be referenced historically.

10 Bar Price Data Points EasyLanguage Essentials Programmers Guide

Price Data Elements

EasyL anguage studies can operate on both historical and real-time data. Each bar in a chart has a set of four
price data points that can be referenced in your studies. The EasyL anguage reserved words for these price
data points are as follows:

Bar Price Data Points
Open or O: Theopening price of the bar.
High or H: The high price of the bar.
Low or L: Thelow price of the bar.
Close or C: Theclosing priceor the bar.

Usage Examples:
Plotl (Close) ;
Plot2 (High) ;
Plot3 (Low) ;
Plot4 (Open) ;

Trade Volume, Tick Count, and Open Interest

Volume for asymbol can be referenced in one of two ways on intra-day charts:. total share/contract volume
per bar, or the number of trades/ticks per bar. Each bar in achart also has a set of five volume data points that
can be referenced in your studies. The EasyL anguage reserved words for these volume data points are as fol -
lows:

Bar Volume Data Points
Volume or V: Thetradevolumein sharesor contracts, or the number of trades or ticks for abar
depending on the symbol settings (see note below).
Ticks: Functionally the same as Volume (see note below).
OpenInt or I:Returnsthenumber of outstanding contractsfor afuture or option.
Upticks: Returnsthe up-ticks or up-volume for a bar.
Downticks: Returns the down-ticks or down-volume for a bar.

Usage Examples:
Plotl (Volume) ;
Plot2 (Ticks) ;
Plot3 (OpenInt) ;
Plot4 (UpTicks) ;
Plot5 (DownTicks) ;

Note: Y ou can specify whether EL will display and cal culate volume based on tick count or trade volume on
intra-day charts from the Format Symbol dialog. Daily, weekly, or monthly charts can only show total share
or total contract volume.

See Appendix A for the volume and tick usage tablesfor more detailed information on which volume reserved
word to use for different bar interval and symbol situations.

Price Data Elements Option Volume, Option Open Interest, and Implied Volatility 11

Option Volume, Option Open Interest, and Implied Volatility

Optionable stock and index symbols have additional options-related volume and cal culated implied volatility
datafieldsthat can be referenced in your studies. These values are only available on daily charts for symbols
with options. The EasyL anguage reserved words for these options related data points are as follows:

Option Volume Data Points
IVolatility: Returnsadaily Implied Volatility value based on aweighted average of the raw
implied volatilities for the options trading for the symboal.
Callvolume: Returnsthetotal Call option volume for all options for the symboal.
PutVolume: Returnsthe total Put option volume for all options for the symbol.
CallOpenInt: Returnsthetotal Call option open interest for all optionsfor the symbol.
PutOpenInt: Returnsthetotal Put option open interest for all options for the symbol.

Usage Examples:
Plotl (IVolatility) ;
Plot2 (CallVolume) ;
Plot3 (PutVolume) ;
Plot4 (CallOpenInt) ;

(
(
(
Plot5 (PutOpenlInt) ;

12

Time and Date Data Points EasyLanguage Essentials Programmers Guide

Time and Date Data Points

Each bar in achart hasa Time and Date stamp that can be referenced in your studies. Easyl anguage uses
simple numeric values for a bar time and date stamp. Bar time and date stamps are always the closing time
and closing date of the bar.

Date or D: EasyLanguage usesa unique numeric date format of: YYYMMDD or 1040615 for June 15,
2004. If you hold your left mouse button down on achart, adatatip will display amorefamiliar bar dateformat.
The Date stamp of each bar in achart is always the closing date of the bar.

Concept Examples:
990320 = March 20, 1999
1050105 = January 5, 2005

Usage Example:
Plotl (Date) ;

Note: Easyl anguage has anumber of built-in functions for converting and formatting of Easyl anguage dates
to standard date formats and to Julian dates.

Time or T: EasylLanguage uses a numeric military time format of: HHMM or 1315 for 1:15pm. The time
zone used by Easyl anguage is determined by your computer’s Windows clock settings and the Time Zone
selection in the Format Symbol dialog. The time and date bar scale you see at the bottom of the chart is the
time and date EasyL anguage will usefor calculations and evaluations. The Time stamp of each bar in achart
is always the closing time of the bar.

Concept Examples:
935 =9:35am
1755 = 5:55 pm

Usage Example:
Plotl (Time) ;

Note: The CalcTime and CalcDate functions can be used to add or subtract minutes or days from an Ea-
syLanguage bar time or bar date.

Computer date and computer time can be referenced using with the CurrentDate and CurrentTime re-
served words.

Price Data Elements Quote Fields 13

Quote Fields

Quote fields are EL reserved words that are real-time snap-shot fields of price information generally used to
createindicatorsinthe Radar Screen and Quotewindows. Therearemany of thesefieldsprovided by the TradeS-
tation Data Network.

These quote fields can be used on any bar-interval. Many of the fieldsrefer to daily price values, bid-ask data,
and other technical and fundamental datavaluesthat can be used on any intra-day charts. Quote field reserved
words only provide avalue on the last bar in achart, and return no historical values.

The EasyLanguage Dictionary contains a complete list of these snapshot quote fields.

Quote Field Examples:
InsideBid: The current inside bid.
InsideAsk: The current inside ask.
High52wk: The current 52-week high.
Low52Wk: The current 52-week [ow.
VWAP: Volume weighted average price.

Usage Example:
if LastBarOnChart then
Plotl (High52Wk) ;

In thisindicator example we are plotting the 52 week high on the last bar in the chart.

Usage Example:
if LastBarOnChart then
Buy next bar at InsideBid Limit
Else
Buy next bar at Close Limit;

In this strategy example, we need a historical value for back-testing but are using the snapshot InsideBid
for real-time orders.

14

Fundamental Data EasyLanguage Essentials Programmers Guide

Fundamental Data
EasyL anguage allowsfor theintegration of fundamental datainto your technical analysistechniquesand strat-
egies for most US stocks. The data provided is both current snapshot values as well as historical data. Easy-
Language provides a number of functions that allow easy access to nearly 500 snapshot and 500 historical
fundamental datafields.

Fundamental datais updated daily and available the next business day as new datais reported. For example,
if a company announced earnings on a Friday, the first associated earnings data would be plotted on a chart
as of the opening bar on the following Monday.

Snapshot Fundamental Data
Snapshot data represents the current value for a fundamental field for a symbol. These snapshot fields have
no historical values.

Historical Fundamental Data

Historical data provides the current value for a fundamental field for a symbol as well as accessto up to 15
years of historical data. Thisdatais usually provided and updated once per quarter when it is reported. When
referencing this historical data you can specify the number of periods back from the current period, where O
isthe current period, 1 would be one period ago, and so on.

Examples:
BETA: Snapshot field of the current BETA value.
QN1I: Snapshot field of the most recent quarter earnings.
SCSI: Historical field of total cash and equivalents.
ATOT: Historical field of the total assets.
LTLL: Historical field of the total liabilities.

GetFundData

The Get FundData reserved word returns both fundamental snapshot and historical data.

Usage Example:
Plotl (GetFundData (“BETA”,0)) ;

Usage Example:
Plotl (GetFundData (“SCSI”,0)) ;

In these exampl es, the fundamental field isatext string followed by the period to return. O isawaysthe current
period.

Available Fundamental Data Fields
The TS User Guide provides a complete list of the fundamental data fields that are available from EasyL an-

guage.

See also: GetFundPostDate, GetFundPeriodEndDate, FundValue, FundDate, and FundPe-
riodEndDate inthe EL Dictionary and User Guide for more information.

Price Data Elements Multi-Data Analysis 15

Multi-Data Analysis

In TradeStation Chart Analysis, you can plot and reference more than one set of historical datain the same
chart window. Each additional data set can display in a separate sub-graph or can be hidden from view. A
maximum of 50 data sets can be inserted in one chart; each data set can be a different symbol or the same
symbol at different bar intervals, or any combination of data sets.

TradeStation Chart Analysis - SPY Daily [A... [8-][1-|[2]B|X]
SPY - Daily AMEX L=122.02 -0.21 -0.17% B=122.01 A=122.02 O=121.95 ...

122.02
120.99
-120.0(

-118.00

QQQQ - Daily NASDAQ L=40.17 +0.04 +0.10% B=40.16 A=40.17 O=40....

H-T T 4017
I J'{ 39.30

H}“{ 38.00

< &

Multi-data chart

Each data set inserted into a chart with Insert~Symboal, is assigned an EasyL anguage data ID number asit is
added to the window, ranging from "Data2" to "Datab0." The symbol that created the chart is aways Datal.

Usage Examplel.

Plotl(Close); // Datal is implied
Plot2 (Close Data2); // Reference Data2;

Multiple data streams may also be referenced with the Data (n) reserved word, where n is the data stream
to reference.

Usage Example2:
Plotl(Close of Data(2));

Note: RadarScreen and OptionStation do not currently support multi-data analysis.

16

Session Information EasyLanguage Essentials Programmers Guide

Session Information

A session isaperiod of trading activity from the time amarket opens until it closes. TradeStation allows you
to determine which sessions are displayed in a chart and allows you to reference session information within
your Easyl anguage studies.

Y ou can create charts that include or exclude pre-market and post-market data for stocks, aswell asinclude
or exclude the 24 hour session for electronic futures. Remember, EasyL anguage cal culates based on the bars
that are loaded in the chart. By default, each symbol has aregular session that is used when creating a chart.
These default sessions, as well as hew unique session periods, are customizable by the user. You can view
and modify session information in the Format~Symbol~Properties dial og.

Y ou can view the default session details for a symbol type as well as create custom session templates for use
inChart Analysis, OptionStation, and Radar Screen. Custom sessiontempl atesallow you to specify the sessions
for which data will be displayed. By using custom session templates, you can specify the data that will be
included in the calculation of analysis techniques and strategies. This allows trading strategies to participate
in specific sessions that are inside or outside of regular market hours.

Thereareanumber of reserved wordsand EL functionsthat will allow you to access and manipulatethevarious
session start and end times.

Usage Example:
Plotl (SessionStartTime(1,1)) ;
Plot2 (SessionEndTime(1,1)) ;

Note: Reported session times are based on chart time, either exchange time or your local time, depending on
your charting settings.

PowerEditor Creating a New Analysis Technique 17

PowerEditor

The EasyL anguage Power Editor can be thought of as a specialized word processor that allows you to view,
write, and modify indicators, functions, and strategiesin EasyL anguage. The PowerEditor automatically starts
whenever you open an existing analysis technique or create one.

The PowerEditor has anumber of featuresthat allow you to create analysistechniques, check codefor errors,
explore the syntax library, and manage EL files.

Create or Open EasyL anguage Analysis Techniques
To open the PowerEditor, you need to create a new analysis technique or open an existing one.

Creating a New Analysis Technique

From the EasyL anguage shortcut bar, click on one of the EL shortcut iconsto create anew analysistechnique.
Thiswill bring upaNew [AnalysisTechnique] dialog. When creating anew analysistechnique, giveit aunique
name and select to which applications the study will be available.

New Indicator EI

51 Mame: Short name:
|

bake available to the following windows:

[w]Chart &nalpziz
[w]FRadarScreen

[[

Select Template:

e

[k. H Cancel ” Help]

New Indicator Dialog

Short name is an optional alternate column-heading name used in RadarScreen and OptionStation. Notes is
an optional description of the analysistechnique, and Select Templates are afill-in-the-blanks structured way
to create analysis techniques.

18

Study File Types EasyLanguage Essentials Programmers Guide

Study File Types

The PowerEditor can create and modify each of the EasylL anguage study file typesfor usein Chart Analysis,
RadarScreen and OptionStation. Some file types are specific to Chart Analysis, others are specific to
OptionStation, and some can be applied to al three windows.

I ndicator: Displays up to 99 plots. Plots can be displayed as an overlay on the chart bars or in a sub-graph
within the chart window. They can contain aert criteria based on conditional rules. Indicators can be applied
to Chart Analysis, RadarScreen, and OptionStation.

ShowM e: Plots adot on the bars in a chart window based on a true/false condition. They can contain aert
criteriabased on conditional rules. ShowMes can a so be applied to the RadarScreen window, but not Option-
Station.

PaintBar: Paintsall or part of the barsin a chart window based on atrue-false condition. They can contain
alert criteria based on conditiona rules. PaintBars can aso be applied to the RadarScreen window, but not
OptionStation.

ActivityBar: Displays multiple data cells along the sides of the barsin achart window based on data from
afiner interval resolution. This"look inside abar" technology enables you to display and analyze prices that
occurred within each bar on your chart. They can contain alert criteria based on conditional rules. Activity
Bars cannot be applied to RadarScreen or OptionStation.

ProbabilityM ap: Displays on the background of the chart window the varying probability of the direction
of price movement based on a historical price data calculation. They can contain alert criteria based on con-
ditional rules. Probability Maps cannot be applied to RadarScreen or OptionStation.

Srategy: Generates one or more trading actions (Buy, Sell, SellShort, or BuyToCover) based on technical
rules using bar price data. They can be simple one order action strategy components, or complete multi-signal
entry and exit order strategies. Strategies cannot be applied to RadarScreen or OptionStation.

Function: A commonly used formulathat is assigned aname. They allow convenient reference to complex
calculations and usually contain user editable parametersthat make the cal culation usage more flexible. Hun-
dreds of functions are already included within TradeStation including most mathematical and indicator cal-
culations. Functions can be called from any Easyl anguage study including another function.

OptionStation Pricing M odel: Generates theoretical option prices and Greek risk calculations for dis-
play in the OptionStation Analysis window. Pricing Models require a strict adherence to OptionStation Ea-
syLanguage syntax rules so that theoretical values are passed seamlessly into the OptionStation window.
OptionStation Pricing Models are not used in RadarScreen or Chart Analysis windows.

OptionStation Volatility M odel: Generatesthe volatility input parameter to the OptionStation Pricing
Model. Volatility Model srequireastrict adherenceto OptionStation EasyL anguage syntax. OptionStation Vol -
atility Models are not used in RadarScreen or Chart Analysis windows.

PowerEditor Syntax Coloring 19

OptionStation Bid-Ask M odel: Generates the best bid and best ask values for usein position tracking
and analysiswithinthe OptionStation Analysiswindow. When available, raw bid-ask pricesare passed through
without modification. Bid-Ask Models require astrict adherence to OptionStation EasyL anguage syntax. Op-
tionStation Bid-Ask Models are not used in RadarScreen or Chart Analysis windows.

OptionStation Search Strategy: Identifies an option position for evaluation by the OptionStation
Search calculation engine. Using option type, strike price, and expiration date, you can describe any option
position. OptionStation Search Strategies cannot be applied to RadarScreen or Chart Analysis windows.

Syntax Coloring
The PowerEditor automatically color codes various language keywords making it easy to identify functions,
reserved words, and other Easyl anguage elements.

Default EasyL anguage Syntax Colors:
Blue: Reserved words, such as Data Elements and Strategy Orders
Dark Magenta: EasyL anguage functions
Dark Green: Comments
Dark Cyan: Text Strings
Dark Green: Skip Words
Black: User-defined variables, inputs, calculations, and all other syntax elements.

Note: Y ou can changethe default colorsfor syntax coloring from the: View~EasyL anguage PowerEditor Pref-
erences~Syntax Coloring dialog.

Verify

The Verify featureis used to check for errors and save your Easyl anguage work. Verify ensuresthe analysis
technique contains all the appropriate words and grammar structures Easyl anguage requiresto calculate. Un-
verified analysis techniques cannot be applied to a chart window and will generate an error message. Syntax
error messages generated from the verify process are displayed in the EasyL anguage Output Bar.

Verify isavailablefrom the PowerEditor Menu Bar, aToolbar button, Right Mouse Menu, and the F3 function
key.

20

EasyLanguage Output Bar EasyLanguage Essentials Programmers Guide

EasyLanguage Output Bar

The EasylL anguage Output Bar offersthree features that are useful when working in the PowerEditor. The
Easyl anguage Output Bar can be added to the desktop from the View Menu. It appears docked at the bottom
of the TradeStation Desktop.

The Output Bar containsthreetabs:

The Verify tab displays any errors found when verifying an analysis technique or strategy. This enables you
tofind errorseasily and quickly so you can resolvethem. TheFind in Filestab displaysthelist of filescon-
taining search results from the Find in Filesfeature. The Print L og tab displaystext messagesthat are created
by the user with Print statements within an analysis technique.

i TradeStation 8.2 - EasyLanguage Essentials - EL Essentials
File Edt View Tools Format Window Help

Db 08 TTLHELN vhrbd R B 2R o AR

TradeStation Indicator - Stochastic S5low : Indicator

oFastK({ 0 }),
oFastD(0),
oSlowkK({ 0),
oSlowD({ 0)}

1 = Stochastie(PriceH, Pricel, PriceC, StochLength, S
Smoothinglength2, SmoothingType, oFastK, oFastD, oSlowHK, oS5l

Mew Funchon

Plotl{ oSlowK, "SlowK") ;
Plot2({ oSlowD, "SlowD"™)

Plot3i({ OwvarBought, "OverBot")}
Plotd (OverSeold, "OvecsSld")} ;

Hew Sirstegy

{ Alert criteria |
if CurrentBar > 2 then

begin

i Irnclez ey

SAVED

| Moo | TT]s [0\ ELEssentials [

¥| Descripeien Technigque Line Typ=
&h'u:u rot recegnized by Essylanguage. Stochastic Slow (Indica... 18 Ezxzor (#61)
A] A2 [M\ Verity A Findin Fies A Prnt Log [

EasyLanguage Output Bar Verify Tab

PowerEditor Analysis Technique Properties

Analysis Technique Properties
When creating or modifying an analysistechnique, you can set the display, scaling, and calculation properties

to be used when applied to a chart or grid application. Each Easyl anguage study type has it own unique set
of property settings that can be customized.

Y ouwill want to set these properties each time you create anew Easyl anguage study so that the study displays
and plots correctly. To access the Properties dialog from within an open EasyL anguage study, use the right
mouse button menu and select Properties. Y ou can aso select Format~Properties from the Menu Bar.

Indicator Properties - Stochastic Slow E Properties Dialog Default Button

Gl Cishee Sesing Aoghcations Haats The Default button on each tab setsthe
General Chet Sle G Sde Crart Colar default settings for all new indicators
Blols created from thispoint forward. Unless
ETTa— shie you are certain that you want to change
o B g | [- - - the application defaults, you should not
Crversid e Rt pressthisbutton. Thereisnoway to go
Bar High Pmghe back to the original PowerEditor de-
ki — e— faults short of re-installing TradeSta-

Rght Tic T — tion.

—

[[] Cspilary Lipcdats Incheation

Defaut

1010.75

(1.010.75

Indicator Properties dialog from within the PowerEditor

22 Analysis Technique Properties Tabs EasyLanguage Essentials Programmers Guide

Analysis Technique Properties Tabs
General: Allowsyou to specify the MaxBarsBack value, real-time cal culations update, and "additional data"
to load for RadarScreen.

Scaling: Allowsyou to specify the plot location and scale range for analysis techniquesin Charts. There are
many options on this dialog tab; see the User Guide for more information.

Same as Underlying Data: Scales and plots values on the chart bars based on the high and low values
display on the screen in the same sub-graph as the price bars.

Right Axis: Scales and plots valuesin their own sub-graph displaying values on the right hand side of
the chart.

L eft Axis: Scales and plots valuesin their own sub-graph displaying values on the left hand side of the
chart.

No Axis: Scales and plots values in their own sub-graph not displaying values on the left or right hand
sides of the chart.

Alerts: Allows you to specify the default state (On / Off) of the Alert, and to set the Alert notification styles.

Applications: Allows you to set the TradeStation windows to which the EasyL anguage study will be made
available.

Note: Uncheck any application that does not apply to your study. Thiswill keep your insert dialogs from be-
coming cluttered with inappropriate indicators.

Chart and Grid Color: Allows you to specify plot colors. The grid color tab is for formatting plots in the
OptionStation and RadarScreen windows.

Chart and Grid Style: Allows you to specify plot styles and plot widths. The grid style tab is for formatting
plots in the OptionStation and RadarScreen windows.

Note: Each study typehasitsown uniqueset of properties. Somesettingsmay not beavailablefor al study types.

PowerEditor EasyLanguage Dictionary 23

EasyLanguage Dictionary

The EasyL anguage Dictionary is areference of all reserved words and functions that can be used in an Easy-
Language analysis technique. It is organized by category and based on the various elements, so it is easy to
find the reserved words or functions needed to program your ideas. The Dictionary also provides notes, ex-
amples, and parameter values to help you quickly understand how each item is used, what it does, and how
the item can be incorporated into your analysis technique or strategy.

TheDictionary isaccessible only when an EasyL anguage document isopen. It isthen availablefromthe Menu:
Tools~EasyL anguage Dictionary, or from the Toolbar (it isthe book icon on the far right).

Easyl anguage Dictionary

Category | Find
Categony MName
Skip Words » || | AbsoluteBreadth ~
Strateqies to include AccumDist
Strateqgy Automation AccumSwinglndex
Strateqy Orders AdaptiveMaovAvg
Strategy Peformance AdvanceDeclineDift
Strategy Pasition Advance DeclineRatio
Strategy Properties ADX
Text Drawing ADXCustom
Text Manipulation ADXR
TradeManager AD¥RCustom
Trendling Drawin Armsindesx
W v v

Mates

|Fletum$ zimple average of values over Length bars |

Example
|'\-"a|ue'| =tvverage(Close 9); |

Parameters
Type Value
numeric Price
numeric Length

) (oo] [

The EasylLanguage Dictionary from within the PowerEditor
Category: The Category tab within the Easyl anguage Dictionary groups together related elements. Under

each category isalist of related reserved words. Clicking on an entry brings up abrief description, and usage
example. The User Function category lists all built-in and user created functions.

Note: The category lists are agreat way to learn about the EasyL anguage elements and incorporate them into
your studies.

24

PowerEditor Window Preferences EasyLanguage Essentials Programmers Guide

Find: The Find tab allows you to search for specific words using partial or complete words. Type in aword
or partial word, and alist of matching entries are displayed.

Definition Button: The EasyLanguage Dictionary is tightly integrated with the TradeStation User Guide so
that you can easily receive additional documentation on a specific function or reserved word. Click the Def-
inition button for any selected entry to bring up a detailed description from the User Guide.

Notes and Examples: In many cases, notes and examples are provided aswell as EL code usage examples.

Parameters. Most reserved words and functions require one or more input parametersin order to calculate.
The Dictionary displays alist of these required parameters.

PowerEditor Window Preferences

You can customize the Easyl anguage PowerEditor environment by setting preferences for text formatting
and size, text and background color, syntax coloring, and fonts. To customize these general preference, go to
View~EasyL anguage PowerEditor Preferences.

Tip: The EasyL anguage PowerEditor Preferences-General tab isalso where you can Verify all Easyl anguage
studiesin one operation.

PowerEditor EasyLanguage PowerEditor Debugger 25

EasyLanguage PowerEditor Debugger

The Debugger is adevelopment tool designed to help check the cal culations within an EasyL anguage study.
This tool enables you to view the values of the various elements within your code (including inputs, arrays,
functions, and variables) on abar-by-bar, or breakpoint-by-breakpoint basis, allowing you to step through the
code and evaluate the calculations.

The variable data shows the values for the current bar being evaluated and all historical values being stored
at that point for that variable. If astudy calls one or more functions, the return values, along with al variable
values within the function, are displayed as well.

Thesevalues are displayed in a pop-up window that is generated whenever the EasyL anguage cal cul ation en-
countersthereserved word BreakPoint within the code of any Easyl anguage analysistechnique. Y ou can
include BreakPoint anywhere within the Easyl anguage code and set it to execute on every bar or you can call
it conditionally to view values on a specific bar or under specific conditions.

Once the Easyl anguage Debugger is displayed, you can step through the code BreakPoint-by-BreakPoint or
close the Debugger and return to the chart.

BreakPoint

TheEasyL anguage Debugger opensautomatically whentheBreakPoint keywordisencounteredinananal-
ysis technique while the EasyL anguage code is being executed.

Each occurrence of BreakPoint withinyour code must be assigned alabel which allowsyou to more easily
identify which specific BreakPoint has caused the calculations to stop and where you are in your code.
Thelabel is specified as a string parameter.

Usage Example:
BreakPoint ("1st") ;

Note: Place BreakPoints anywhere in your code where you want to evaluate calculations.

Important War ning: Whilethe EasyL anguage Debugger isopen, all dataactivity inall TradeStationwindows
ishalted. No data, aerts, or strategy orderswill be generated. No windowswill update until the EasyL anguage
Debugger is closed. The EasyL anguage Debugger isintended for use in adevelopment environment. Debug-
ging should not take place while trading or using strategy automation.

26 BreakPoint EasyLanguage Essentials Programmers Guide

E TradeStation EasylLanguage Debugger - Breakpoint
(T T O =

Tree X || Properties Valugs X
1= Bar Information Symibol Name TRAD, Daily
= 0 AT/S (3) BreakPoint MACD LE - 1
3 AT/S (0) Strategy Group Current Bar Humber 1
=50 AT/S (1) Current Bar Date & Time 01/15/2004 16:00:00
5 & 0 - MACD LE (Strategy) MaxBarsBack 30
= 9 Inputs Varigble Hame MACDAVG
-1 W) variables Type double
- Data-Straam 1 v
& 12 Calls (3
B0 AT/S (2)
= 4 0- MACD SE (Strategy) Range Component Hame Type Dat...
9 Inputs 0,5,2 MACDSE(0) MyMACD double 1
= 14 variables

@ gl MyMACD - doublef Series, 51 {
-1 [MACDAVG - double(Series, 51) (DataStream-1)}
%) calls

£ > £ ¥
Currant Bar = 1 Break Point = 1

The EasyLanguage Debugger called from within a strategy.

The EasyL anguage Debugger window is divided into three panes:

Module Tree (Ieft pane): A tree control that shows a breakdown of the variablesin the applied study, as
well as any functions that are referenced. Click + to expand the contents of a category; click - to col-
lapse the contents of a category. The Module Tree pane displays items such as inputs, constants, vari-
ables, and the return values of the functions that are associated with the study.

Properties (upper right pane): Displays the type of object, its name, data number, and memory location.

Watcher (lower right pane): Shows the values, including historical values stored up to that point, of any
variable or return values that were double-clicked in the Module Tree pane.

Language Elements BreakPoint 27

Language Elements

EasyL anguage eval uates the code within an analysi s technique from the top of the instructionsto the bottom.
Eachindicator or strategy isasmall computer program designedto runwithin oneof three TradeStation analysis
windows. Charting, RadarScreen, or OptionStation.

At the most fundamental level Easyl anguage is made up of language elements and punctuation, separated by
white space (spaces, tabs, and new lines). EasyL anguage is not case sensitive. Y ou can use upper, lower or
mixed case |ettersin your programming.

Usage Example:
Plotl (Close); // extra spaces are OK
Plotl (Close) ; // no extra spaces are OK

EasylL anguage ignores any excess white space between syntax elements, allowing flexibility in formatting
the look and readability of your code. However, you cannot add white space within a syntax element.

Usage Example:
Plot 1l(Close); // a space before the ‘1’ will cause an error
Plotl (Close); // this is correct

EasyL anguage syntax elements can be broken down in several main areas:

Reserved Word: A built-in syntax element with a predefined function or data reference, these words
are the foundation of EasyL anguage.
(eg.Close, Volume, Time, Date, Buy, SellShort, Plotl, If, etc)

EL Function: EasyLanguage code that performs a calculation or action that can be called from any
other study or function.
(e.g. Average, Highest, Momentum, Range)

Skip Word: These are syntax words that make the code easier to read, but skip words have no affect on
the calculations.
(eg.on, At, Of, Than, From)

User Defined: Descriptive variable, array, and input names to make the calculations and function of an
Easyl anguage study easier to understand.

Usage Example:

Inputs: myFirstInput (20) ;
Variable: myFirstVariable(0) ;

In this example, inputs and variables are declared and given a descriptive name.

28

Punctuation EasyLanguage Essentials Programmers Guide

Punctuation
Like any written language, Easyl anguage requires the correct punctuation in order to accurately convey the

meaning of the words. Here are the punctuation conventions:
, Semicolon: Must be used to end each complete Easyl anguage statement.
Usage Example:
Plotl (Close) H

, Comma: Separates each item in a set of parametersto afunction, or separates alist of declared input
or variable names.

Usage Examples:
Plotl (Average (Close, 10)) ;

Vars: varl(0), var2(0), Var3(0);

() Parentheses: Used to group and set the precedent for mathematical calculations or true/false
comparisons; used to group sets of function parameters.

Usage Example:
Plotl (Average (Close, 10))i

Plot2 ((Close + High + Low) / 3);

[] Square Brackets: Used to reference previous values of data-related reserved words, calculations,
and functions. (e.g. [0] = the current bar, [1] = of 1 bar ago, and so on; used to specify an array variable
element.

Usage Example:
Plotl (High [1]) ; // High of one bar ago

Usage Example:
Array: PrevHighs [5] (0); { Declare a 5 element array }

Plotl (PrevHighs [5]); { Reference fifth array element }

{ } Curly Brackets: Allowsfor commentswithin your code; everything within aset of curly brackets
isignored in the calculations of EasyL anguage.

Usage Example:
Code comments and notation goes here }

Language Elements Punctuation 29

/ / Double Forward Slash: Allows for comments within your code on asingle line; everything after a
double forward slash on the same lineisignored in the calculations of EasyL anguage.

Usage Example:
// code notation goes here

Quotation Marks: Defines atext string; generally used for naming strategy signals, plot names,
alert messages, and other text message output.

Usage Examples:
Plotl (Close, "The Close"); { Name a plot }

Buy ("KeyRev") next bar at Market; { Name a strategy signal }

Colon: Used in adeclaration statement to specify the beginning of alist of names; used in numeric
expression formatting.

Usage Examples:
Input ¢ Price(close), Length(14); { Declare an Input list }

Print (Date $72$0); {Numeric formatting, set decimal places}

Note: The first value in numeric formatting represents the number of digits to the left of the decimal point;
the second value is the number of digits to the right.

30

Operators EasyLanguage Essentials Programmers Guide

Operators
An operator is used to perform a specific operation on aset of values or conditionsin an EasylL anguage state-
ment. There are three types of operators: Mathematical, Relational, and Logical.

Mathematical Operators
Mathematical operators are used to perform math calculations: addition, subtraction, multiplication, and di-
vision. Multiplication and division have precedence over addition and subtraction.

+ Add: Perform addition.

Usage Example:
Plotl (Upticks + DownTicks) ;

= Subtract: Perform subtraction.

Usage Example:
Plotl(Close — Closel[ll);

Multiply: Perform multiplication.

Usage Example:
Plotl(Close * 1.01);

| Divide: Perform division.

Usage Example:
Plotl ((Open + High + Low + Close) / 4);

Tip: Itispreferableto use multiplication instead of division whenever possible. Multiplicationisslightly more
efficient and does not require an internal division-by-zero check. However, when dividing by an odd number
it is better to use division for the most accurate calculation values.

Concept Example (Multiplication versus Division):
(High + Low) / 2
(High + Low) * .5 (Better)
Dividing by 2 or multiplying by .5 is an equivalent operation.

(High + Low + Close) * .3334
(High + Low + Close) / 3 (Better)
In the second example, it is better to divide by 3 so that you don’t lose precision.

Language Elements Relational Operators 31

Relational Operators

Relational operatorsare used to perform true/fal se comparisons of numeric val ues; each comparison must have
aright and left numeric expression. Relational operatorsyield either atrue or falsevalue. Trueand falsevalues
are also called boolean values. Boolean is a data type in Easyl anguage for variables and inputs.

There are six standard relational operators in EasyL anguage and two additional multi-bar relational compar-
isons for evaluating crossing conditions.

= Equal to

Usage Example:
if Close = Close[l] then Valuel = Close;

In this example, the equal sign is being used in two ways: first as the relational operator comparing the true/
false expression, and second as a variabl e assignment operator.

<> DoesNot Equal

Usage Example:
if Close <> Close[l] then Alert;

> Greater Than
< LessThan

Usage Examples:
if Cloge > Close[l] then Alert;

if Close < Close[l] then Alert;

>= Greater Than or Equal To
<= Lesser Than or Equal To

Usage Examples:
if Close >= Close[l] then Alert;
if Close <= Close[l] then Alert;
The equal sign must always be on the right.

Crosses Above Of Crosses Over and
Crosses Below Or Crosses Under

These are multiple bar patterns that ook for one value from the previous bar to cross above or below another
value on the current bar. This can also be a multi-bar pattern if the values are equal for one or more bars.

32

Logical Operators EasyLanguage Essentials Programmers Guide

Note: If the two values are equal on one or more bars, thisis not considered a cross.

Usage Example:
if Close crosses above Average (Close,10) then Alert;

if Close crosses below Average (Close,10) then Alert;

Logical Operators
Logical operators combine two or more true/fal se expressions to evaluate their truth. The logical AND yields
true only when all expressionsaretrue. Thelogical OR yieldstruewhen at least one of the expressionsistrue.

AND Logical AND

Usage Example:
if Close > Close[l] AND Low < Low[l] then Alert;

OR Logical OR

Usage Example:
if Close > Close[l] OR High > High[1l] then Alert;

Note: Thelogical operator AND reducesthe number of possibletrue occurrences, and OR increases the number
of possible true occurrences.

Precedence-Order of Operations

Operators have an order or precedence by which statements are evaluated. Certain operators have higher pre-
cedence over others and those operator calculations are performed before those with lower precedence. Op-
erators are evaluated from left to right through the cal cul ation or comparison. Multiplication and division have
precedence over addition and subtraction. AND has higher precedence over OR.

Y ou can use parentheses around expressionsto force grouping. Cal cul ations or comparisonsinsi de parentheses
arealways performed first, with theinnermost set having precedence working outward. Even if you don't need
parentheses, they are a good way to document your calculation or comparison intentions.

Concept Examples (Mathematical Precedence):
1 +5* 3 + 4 =20

(1+45) * (3+4) 42
1 + (5*%(3+4)) 36

Concept Examples (Logical Precedence):
FALSE AND TRUE OR FALSE AND TRUE = FALSE

FALSE OR TRUE AND FALSE OR TRUE = TRUE
FALSE AND (TRUE OR FALSE) AND TRUE = FALSE

Language Elements

Reserved Words

33

Reserved Words

Reserved wordsor keywords arewhat make up the EasyL anguage programming language. Each reserved word

performs an action or returns a data value. They are the building blocks of your indicators and strategies.

Reserved words are not case sensitive. Y ou should avoid using areserved word hame to name your variables
or inputs. Using areserved word name for a variable or input causes you to lose its functionality within the
analysistechnique. EasyL anguage uses syntax coloring to visually identify reserved words and other language

elements.

Thisisasample of commonly used built-in Easyl anguage reserved words:

above
barinterval
breakpoint
commentary
currentdate
definedlIfunc
false

high

limit
minmove
numericarray
or

plot4
pricescale
shares

this

v

aert
barssinceentry
buy
contracts
currenttime
downto

for

[

low
newline

0

over

plotpb

print

stop

ticks
variables

and
begin
buytocover
Cross

d

else
from

if
market
next

of

plotl
points
sell

t

time
volume

array
below

c

Crosses

data

end
getsymbolname
input
marketposition
nopl ot

on

plot2

+

sellshort

than

true

while

bar
bigpointvalue
close
currentbar
date
entryprice

h

I
maxbarsback
numeric
open

plot3
pointvalue
setplotcolor
then

under

Note: See the EasylL anguage Dictionary for acomplete listing of all reserved words, definitions, parameters,

and their usage.

34

Constants EasyLanguage Essentials Programmers Guide

Constants

Constants are reserved wordsthat represent afixed value, where the name of the constant representsthe value.
(e.g. Theword Blue isanumeric constant representing the numeric Easyl anguage value for the color Blue,
whichis2.)

Usage Example:

SetPlotColor (1,Blue); { Blue = 2 }

Conditionl = DayofWeek (Date) = Monday; { Monday = 1 }
Skip Words

Skip words are reserved words used to improve the readability of your Easyl anguage code. They have no
other function and are ignored when executing the Easyl anguage instructions.

Thisisasample of commonly used Easyl anguage skip words:

a an at by the
is of on than the
Usage Example:

Buy next bar at Market;
Buy next bar at the Close of this bar Limit;

In these examples, the skip words make the code more readable.

Attributes

Attributes are switchesthat turn on or off certain functionality for the entire analysistechnique. They are only
evaluated and set once at verify time and cannot be changed within the code. Attributesaffect only theanalysis
techniqueinwhich they arereferenced, soitispossibleto have afunction with Infinite Loop detection enabled
but the calling analysis technique with the logic disabled.

Usage Example:
[LegacyColorValue = TRUE]
Thisturns on or off the legacy color values.

Usage Example:
[IntrabarOrderGeneration = TRUE]
Thisturns on or off intra-bar strategy order generation.

Usage Example:
[InfiniteLoopDetection = TRUE]
Thisturns on or off infinite loop detection.

Language Elements EasyLanguage Functions 35

EasyLanguage Functions
EasyL anguage functions are frequently used formulas or comparisons that can return either a numeric, true/
false, or string value. Functionscan be called from any analysi stechnique or within another function. Functions
allow you to write a complex mathematical formulaor action once, and then reference that function in other
analysis techniques when needed.

The name of the function is the syntax convention for calling it. Most functions have one or more input pa
rameters that modify the calculation or action of the function, making it more useful and flexible in avariety
of different circumstances.

The most common mathematical and technical analysis calculations are already written and built into Trade-
Station for integration into your custom studies. Y ou can also create your own library of functions. Once ver-
ified, your function appears in the EasylL anguage Dictionary and is callable from any other study.

Thisisasamplelist of commonly used built-in EasyL anguage functions:

ADX Average AverageArray Avgprice BollingerBand
CalcDate CalcTime CloseD Correlation Divergence
DaysToExpiration DMI FastD FastK HighD
Highest HighestArray KeltnerChannel LastBarOnChart LinearReg
LinearRegSlope LowD L owest LowestArray MACD
MidPoint Momentum MoneyF ow MRO OpenD
PercentChange Parabolic Pivot Range RSl

RSquare SlowD SlowK SortArray StandardDev
Summation TriAverage TrueRange WAverage XAverage

Note: See the EasyL anguage Dictionary for amore complete listing of commonly used functions and their uses.

Usage Example:
if Average(Close,10) crosses above Average (Close,20) then
Buy next bar at market;

In this example, the Average function is called as part of a strategy rule.

36 Declaration EasyLanguage Essentials Programmers Guide

EasylLanguage Statements

Computer programs are a series of instructions written by a programmer according to a given set of rules or
conventions (syntax). All computer programs basically do three main things: evaluate expressions, change
the order in which expressions are evaluated, and output data to a user.

EasyL anguage provides a wide variety of additional tools and actions that are trading related that can be in-
corporated into your analysis techniques.

Each compl ete statement in EasyL anguageisfollowed by asemicolon ; whichsignifiestheend of astatement.

Usage Example:
Valuel = Highest (High,20) [1];

There arerelatively few reserved words that can start an Easyl anguage statement. These few reserved words
are the building blocks of all indicators and strategies.

Hereisalist of some of the more common EL statements:

Usage Examples:
Inputs: inputname(defaultvalue);
Variables: variablename(intialvalue);
Arrays: arraynamearraysize] (intialvalue);
If <trueffalse expression> then begin <EL statement> end;
Plot1(numericvalue);
Alert(alert string);
Buy next bar at Market;
Sell Short next bar at Market;
For <variablename> = 1 to <num> then begin <EL statement> end;
Print(expression list);
Commentary(expression list);

Thereare other reserved wordsthat can start an EL statement, like variabl e assignment statements, comments,
and others.

Declaration

Declaration statementsallow youto create your own uniquelanguage elementsfor input parameters, variables,
and array variables. These names should be descriptive of the calculation or value they are storing, making it
easier tofollow thelogic and intent on the syntax. Again, input and variable declarations are not case sensitive.

The declaration name of an input, variable, or array can be amaximum of 42 characterslong. They must start
with an apha character and cannot start with a number or symbol, with the exception of an underscore.

EasyLanguage Statements Inputs 37

Inputs

Declaration of inputs creates names for parametersin an analysis technique. These parameters can be used to
alter the cal culated values, change displayed colors, or introduce branching logic. Inputs allow you to modify
the calculation logic from within an analysis window once the study is applied, making it easy to test different
ideas and scenarios without having to modify the EasyL anguage code.

When declared in astrategy, inputs allow you to utilize the optimization featuresin a Chart Analysiswindow.
Optimization allowsyou to set arange of parametersfor your strategy inputsand have each scenario eval uated
and displayed in a comprehensive report.

The value held by an input cannot be modified within the body of the code in the study.

Input names are unique to the study they are declared in. 'Y ou can use the same name over again in any other
study, but you cannot use the same name within the same study; for example declaring an input with the same
name asavariable. Also, remember to avoid naming inputs with the same name as an Easyl anguage reserved
word or function.

The Input reserved word has two forms: Input and Inputs, and must be followed by a colon : then a
list of input names separated by commas.

Each declared input must be given adefault value that is generally set to some useful value. Thisdefault value
determines the data type of the input (numeric, true/false, or text).

Usage Example:
Inputs: Price(Close), Length(20);
Plotl (Average (Price, Length) ;

Inthisexample, thedeclared input name Pr i ce representsthe C1ose of each bar andtheinput nameLength
represents the number 20.

38

Variables EasyLanguage Essentials Programmers Guide

Variables

Variables are a programming tool that allow you to store values and refer to those val ues when needed. Each
variable has a unique name that can be referenced in an analysis technique when needed. Variables can be
numeric val ues, true/fal se comparisons, or text strings. Variablesallow you to organize and annotate your code
with descriptive names that describe the nature of the calculation or purpose of the data. Variables hold their
value from bar to bar until changed.

There are severa benefitsto storing valuesin variables: they can reduce typographical errors, complex state-
mentscan bereferred to by asimple name, readability and understanding areimproved, and they are processing
and memory efficient.

Variables names, like inputs, are unique to the study they are declared in. Y ou can use the same name over
again in any other study, but you cannot reuse the same name within the same study, for example declaring
avariable with the same name as an input. Also, remember to avoid naming variables with the same name as
an EL reserved word or function.

User-named variables must be declared before they can be used. The variables reserved word is used to
declarevariables, and it hasfour forms: Variables, Variable, Vars, Var. Eachisfunctionaly
equivalent and each must be followed by acolon (:), then alist of variable names separated by commas.

Each declared variable must be given an initial value. variables are generally initialized to 0, but can be
initialized to any useful value. Thisinitialized value determines the data type of the variable (numeric, true/
false, or text string).

Usage Example:
Variables:
LastHigh(0), { creates a numeric variable }
NewHigh (false), { creates a true/false variable }
HighAlert (""); { creates a text variable }

Variable Assignment

Calculations, comparisons, and other values are often stored in variables for use throughout an analysis tech-
nique or strategy. The act of setting a variable to some new value or stateis called assignment. The equal sign
(=) reserved word is used for variable assignment.

Usage Example:
Vars: SlowAverage(0), FastAverage(0) ;

SlowAverage = Average (Close, 18);
FastAverage = Average (Close, 9);

In this example, the declared Vars names are descriptive of the intended calculations.

EasyLanguage Statements Understanding Variable Types 39

Understanding Variable Types
Many indicators, strategies, and functions are written using variables, inputs, and arrays. These language el-
ementsallow youto organize and manageinformation, aswell asbuildin flexibility when the study isapplied.

There are three variable, input, and array types:

Numeric - Holds a simple or complex number, positive or negative. There are three numeric typesin
Easyl anguage: Integer, Float, and Double (see Numeric Types).

Trueffalse - Holds atrue/false state, either atrue/false expression or thewords t rue or false.
Text Sring - Holds atext string, numbers or |etters enclosed in quotation marks (“text”).

Pre-Declared Variables
Pre-declared variables are variables that are automatically recognized by the language. They are functionally
equivalent to user-declared variables, but do not need to be declared.

Pre-declared variables come in two types: numeric and true/false. There are no pre-declared text variables or
arraysin Easyl anguage.

Value0 to Value99 - There are 100 pre-declared numeric variables.
Condition0 to Conditition99 - There are 100 pre-declared true/false variables.

Usage Example:
Valuel = Average (Price, Length) ;

Conditionl = Close Crosses Above Valuel;

Note: Pre-declared variablesare generally used during the early devel opment stage of astudy and | ater replaced
with more descriptive user-declared variables in the final version of the analysis technique.

40

Arrays EasyLanguage Essentials Programmers Guide

Arrays

An array is a programming tool that allows you to store, organize, and reference non-linear data values. The
declaration of anarray createsanamethat refersto agrouped set of dataelementswithin an analysistechnique.
An array can hold numeric values, true/false comparisons, or text strings. Y ou reference data elements within
an array with an index number. Like variables, you can organize and annotate your arrays with descriptive
names that describe the nature or purpose of the values stored.

An array may be described as a table of variables. Where a variable only holds one value, an array can hold
many values. Using an array has the advantage of alowing manipulation of the valuesin al or part of the
array at once. That is, al the values can be averaged or sorted as a group.

Theelementsin an array may be organized in asingle dimension or multiple dimensions. In spreadsheet terms,
al-dimensional array has 1 column, a2-dimensional array has columns and rows, a 3-dimensional array has
additional spreadsheets one on top of the other.

1-dimensiona Array 2-dimensional Array
1 1.1 1,2
2 2.1 2.2
3 3.1 3.2
4 41 42
3 51 52
6 6.1 6,2
7 71 7.2
8 8.1 8.2
9 81 g2
10 10,1 10,2

Note: Thenumbersinthecell arethereferencenumbersof thearray dataelement. Also, arraysin EasylL anguage
actually start at data element 0. However, all built-in user-functions that operate on arraysignore the zero el-
ement, so it is advised not to use the zero element.

Array names, like variables, are unique to the study they are declared in and the same array name can be used
again in any other study. Remember to avoid naming arrayswith the same name as an Easyl anguage reserved
word or function.

An array can hold afixed number of elements or the number of elements can be dynamic. Each fixed array
must specify the maximum element reference number, and give aninitial default valuefor each element; array
elements are generaly initialized to 0, but can also be initialized to any useful value.

Thearraysreserved word hastwo forms: arrays and array. Eachisfunctionally equivalent and each must

EasyLanguage Statements Arrays 4

befollowed by acolon (:), then alist of array names separated by commas. The number in brackets after the
array name is the maximum element number of the array (not the size) and the number in parenthesesis the
initial value for each element and the type of the array (numeric, true/false, or text string).

Note: The size of an array would be the maximum element number plus 1 for the zero element.

Usage Example:
Arrays: WeeklyHighs[52] (0), WeeklyLows[52] (0) ;

This example declares two 1-dimensional arrays, each with 53 elements, 0to 52, and initializes each numeric
element to 0.

Usage Example:
Arrays: VolumeHighs [5,20] (0), VolumeLows[5,20] (0) ;

This example declares two 2-dimensional arrays, each with 6 elements (columns) by 21 elements (rows), a
total of 126 elements, and initializes each numeric element to O.

Note: Remember to avoid using data element O if you are going to use any of the built-in array functions.
These functions do not reference the zero element in an array.

EL functionsthat operate on arraysinclude:

SummationArray (ArrayName, Size) - Thisfunction sumsthevaluesinthefirst size elements of
the array identified by ArrayName.

SortArray (ArrayName, Size, HiLo) - Thisfunction sortsthevaluesinthefirst size elementsof
the array identified by ArrayName, in either ascending or descending HiLo order.

AveragelArray (ArrayName, Size) - Thisfunction averagesthevaluesinthefirst Size elementsof
the array identified by ArrayName.

See dls0: Sort2DArray, HighestArray, LowestArray, and other array related reserved words
and functionsin the EL Dictionary.

Error Checkingin Arrays:
It is good programming practice to have checks within your code to avoid referencing array elementsthat do
not exist. If you attempt to reference an array element that has not been declared, a runtime error will occur.

42

Dynamic Arrays EasyLanguage Essentials Programmers Guide

Dynamic Arrays

Dynamicarraysareused whenthenumber of elementsneededinanarray isnot known at thetime of declaration.
All Dynamic arraysin EasyL anguage are 1-dimensional arrays. Currently, multi-dimensional dynamic arrays
are not supported.

Dynamic array declarations are similar to fixed array declarations except that the maximum element number
in brackets will be left blank. Once declared, you must call the reserved word, Array SetMaxIndex, to
set the maximum index value of the array prior to setting or referencing valuesin the array.

Usage Example:
Vars: Count (0) ;
if High > Highest (High,20) [1] then Count = Count + 1;
Array: MyDynamicArray[] (0) ;
Array SetMaxIndex (MyDynamicArray, Count) ;
MyDynamicArray [Count] = High;

This example stores the highest highs within the chart in a dynamic array.

Thereare special functionswithin EasylL anguage that operate exclusively on dynamic arrays. Thesefunctions
will not accept fixed arrays asinputs. However, most of the built-in functionsthat operate on fixed arrayswill
also work on dynamic arrays.

EL reserved wordsthat operate only dynamic arraysinclude:

Array Sum(ArrayName, BegElementNum, EndElementNum) - Thisfunction sums the values
in the dynamic array identified by ArrayName starting with BegElementNum and ending with EndElement-
Num.

Array Sort (ArrayName, BegElementNum, EndElementNum, SortOrder) - Thisfunction
sortsthe valuesin the dynamic array identified by ArrayName starting with BegElementNum and ending with
EndElementNum in either ascending or descending order.

Seedso: Array Compare and Array Copy

Variable Calculation and Storage
When you reference avariable, the value the variable returnsis the value of the variable as of the close of the
previous bar. Take alook at the following example.

Usage Example:
Valuel = Valuel + 1;

In this variable assignment statement, we are incrementing valuel on each bar. Since the reference to
Valuel referstothelast closed bar value of valuel, valuel can only increment once per bar, regardless
of the number of times an analysis technique cal cul ates per bar.

EasyLanguage Statements IntrabarPersist Variables and Arrays 43

So each time an analysis technique calculates intra-bar, the previous intra-bar value of a variable is thrown
away. Each variable value only gets permanently set once per bar when the bar closes.

If you need to count eventswithin abar, youwill need to declare aspecialized variabletypethat allows storage
of variables on atick-by-tick basis. This specialized variableiscalled an ‘ IntrabarPersist’ variable and can be
used to save variable values intra-bar.

IntrabarPersist Variables and Arrays
IntrabarPersist is a type of variable or array declaration keyword that creates a specialized variable or array
that can store and update variable values tick-by-tick.

Usage Example:
Vars: IntrabarPersist tickcount (0) ;
tickcount = tickcount + 1;

In this example, the variable t i ckcount isableto count the total number of ticks on each bar.

Usage Example:
Vars: IntrabarPersist count (0) ;
Array: IntrabarPersist lastthree[3] (0) ;

count = count + 1;
lastthree [count] = close;
if count = 3 then count = 0;

In this example, the array is able to hold the last three trade prices.

Numeric Types
Easyl anguage has three main data types for inputs, variables, and arrays: numeric, boolean(true/false), and
strings.

Numeric inputs, variables, and arrays can be declared with a numeric type that specifies the precision of the
numeric val ue being stored depending on the precision needed in your cal culations. Integerstake up lessmem-
ory than doubles.

Integers (int) in EasyL anguage are signed integers meaning that they can represent both positive and negative
whole numbers in arange from -2,147,483,648 to 2,147,483,647. Integers cannot store the decimal portion
of anumeric value.

Floats (float) in EasylL anguage are signed values meaning that they can represent both positive and negative
numbers. Floats offer the ability to storelarge decimal val uesat areduced memory usage but withlessprecision
than doubles. Since most internal EL values are doubles, comparison errors may occur if you mix numeric
types. It is not recommended to use Floats.

44

Historical Reference of Variables EasyLanguage Essentials Programmers Guide

Doubles(double) in EasyL anguagearesigned val uesmeaning that they can represent both positiveand negative
numbers. Doubles offer the ability to store very large values with the highest precision.

Note: For most EasyL anguage studies, it isunnecessary totypeinputs, variables, and arrays. By default, inputs,
variables, and arrays are initially typed to double for the greatest flexibility. However, EasyLanguage will
automatically try to retype variablesto integer if possible. Typing variablesis aways optional, but when used
in complex analysis techniques and strategies it may produce substantial memory savings.

There are three reserved words used to identify the three numeric types:
INT for integer
FL OAT for float
DOUBLE for double

The variable data type isidentified at the beginning of every unique declaration. For example,

Usage Example:1
Variables: double AvgHighs(0), int LookBack (0) ;

The type does not carry into the next variable after the comma asit does in other programming languages.

Usage Example2:
Variables: float AvgHighs (0), AvgLows (0), int LookBack (0) ;

If you do not declare a specific type for each new variable, the type will default to double.

Historical Reference of Variables

Variables, formulas, functions, and reserved words can reference previous bar values of themselves on any
historical bar within the chart using square bracket notation. Y ou can also referencearray elementshistorically
by adding an additional set of square brackets[n] to the array reference.

Remember that Easyl anguage calculates in bars. The bar interval is what makes the analysis whether it is
tick, minute, daily, or any other interval. The number in the square-bracket notation is always the number of
barsto look back. Use"[0]" to reference the current bar.

Usage Example:
Plotl (Close[5]);
Plot2 (Highest (High, 10) [1]);
Plot3 ((Close - Open) [1]);
Conditionl = Condition2[1] OR Condition2[2];
Array: myarray[5] (0);
Valuel = myarray[5] [10]; { element 5 of 10 bars ago }

EasyLanguage Statements Variables as Counters 45

Variables as Counters
Variableshold their values from bar to bar and can reference the previous bar value of themselvesin the same
assignment statement. This is useful for counting events and accumulating values.

Usage Example:
Valuel = Valuel + 1; // simple once per bar event counter
Value2 = Value2 + (Close - Close[l]); // sum net changes
Value3 = Value2 / Valuel; // Cumulative average

In this example, we are counting barsin order to cumulatively average the net change.

Setting and Holding Variables Conditionally

Variables hold their value from bar to bar until they are re-assigned, i.e., reset or recalculated. This alows
you to capture avalue and hold it until needed. When doing this, the variable assignment statement is placed
inside a conditional so that the variableis set or calculated only when the condition istrue. The variable holds
the new value until the next time the condition istrue.

Usage Example:
Vars: BarlRange (0) ;
if Date <> Date[l] then
BarlRange = Range;

In this example, on thefirst bar of each day on an intraday chart, the variable Bar1Range will be set to the
range of that first bar. Bar1Range will retain that value until the first bar of the next day. Referring to
BarlRange on any intraday bar will return the range of the first bar of that day.

46

Conditional Branching EasyLanguage Essentials Programmers Guide

Conditional Branching

Conditional branching or selection statements execute one of moreinstructionsbased on certain true/false con-
ditions. The i f reserved word startsall conditional statementsin EasyL anguage. Complex i f statementscan
be nested and grouped to create multifaceted logic trees that perform certain actions under certain conditions.

If statementsarethe enginesthat driveall computer programming languages and applications, they are what
computer programming isal about. By performing certain calculations or actions at different times, you are
ableto build logic that can accomplish almost anything.

Therearefour forms of the 1 £ statement that we will discuss. In additionthereare once and switch/case
statements which add additional programming flexibility and performance enhancements:

if...Then...

Thisisthe simplest form where one action is performed based on a true/fal se test.

Usage Example:
if High > Highest (High,10) [1] then
Alert;

if...Then...Else...

In thisform, one action is performed if atrue/false test is true, and another action istaken if false.

Usage Example:
if Close > Average(Close, 20) then
SetPlotColor (1, Green)
Else
SetPlotColor (1, Red);

Note: The use of the semicolon is only required when the entire statement is complete.

If...Then Begin...End (Block Statement)

Inthisform, multipleactionsare performed withintheblock statement. Block statementsalwayshaveabegin
and an end, with one or more statements within the block to be executed.

Usage Example:
if Close > Average(Close, 20) then begin
SetPlotColor (1, Green) ;
Alert;
end;

Note: The use of the semicolon is required for each complete statement within the block.

EasyLanguage Statements If...Then Begin...End Else Begin...End 47

If...Then Begin...End Else Begin...End

In this form, multiple actions are performed within each block statement.

Usage Example:
if Close > Average(Close, 20) then begin

SetPlotColor (1, Green) ;

Alert ("Close Above Average') ;
end
Else begin

SetPlotColor (1, Red);

Alert (“Close Below Average”) ;
end;

Note: The use of the semicolon isnot required after the first end because the overall statement in not complete
until the final end.

ONCE...Begin...End

Thisisaboolean expression that is never tested again once the expression becomes true. Once the expression
istruetheentire piece of codeis skipped. The once statement can be used instead of any true/false expression
that only needs to be evaluated once.

Usage Example:
Var: Counter (0)
if (CurrentBar = 1) and (Counter = 0) then
Counter = 1000;

This can be rewritten using once

Var: Counter (0)

once (CurrentBar = 1) and (Counter = 0) begin
Counter = 1000;

end;

In this case the Boolean expression evaluated on every bar/tick is eliminated, enhancing overall performance.

48

Switch/Case EasyLanguage Essentials Programmers Guide

Switch/Case

The switch and case statements help manage complex conditional branching operations. The switch state-
ment executes one of the case sections of code based on the value of the switch expression. Code processing
begins at the first matching case statement and proceeds until the end of that case code section or until abreak
statement transfers control out of the entire switch statement.

Usage Example:
switch (Close) begin
default
SetPlotColor (1,Yellow) ;
case 24.00:
SetPlotColor (1,Red) ;
case 25.00 to 30.00:
SetPlotColor (1, Cyan) ;
// implicit break
case 31.00, 32.00, 33.00:
SetPlotColor (1,Blue) ;
Alert;
Break; // explicit break
end;

Thebreak statement is used to end processing of a particular case code section within the switch statement
andto branchtotheend of the switch statement. If no break statement isused, animplied break transferscontrol
out of the case code section to theend of the switch statement. Only one case code section will ever be executed
during acalculation cycle. If morethan one case statement matchesthe switch condition only thefirst matching
case code section will be executed.

Thedefault code sectionisexecuted if no case expression matchesthe value of the switch expression. The
default section can appear anywhereinthebody of the switch statement but therecan beonly onedefault section.

Switch expressionsand case conditionscan beeither numericor text string. Switch statements can be nested
and the switch statement can include any number of case conditions.

Note: Although it is possible to use relational operators (e.g. >, =, and <) or logical operators (e.g. AND /
OR) in case conditions, it is common programming practice to use if...then statements in those type of con-
ditional statements.

Iteration For Loop 49

lteration

Iteration statements cause one or more EL statementsto be executed repeatedly on the same bar for a specific
number of iterations or until atrue/false condition is met. There are three types of iteration statementsin
EasyLanguage: For loops, while loops, and repeat loops.

For Loop

A for loop repeats one or more statements a specific number of iterations defined by the user in the for
statement loop range values. This numeric range isincremented in aloop counter stored in avariable for ref-
erence within the block of statements. Once the counter reaches the specified limit, the for loop ends and
the next statement in the code is evaluated.

For loops can iterate the count either ascending or descending depending on which reserved word is used:
To - count ascending
DownTo - count descending

Usage Examplel (ascending):
Vars: RangeSum(0), x(0);{ Declare Variables }
RangeSum = 0; { Reset variable each bar}
For x = 0 to 5 begin
RangeSum = RangeSum + Range [x];
end;
This for loop will iterate through the statement block 6 times (0, 1, 2, 3, 4, 5).

Usage Example2 (descending):
Vars: RangeSum(0), x(0);{Declare Variables}
RangeSum = 0; {Reset variable each bar}
For x = 5 downto 0 begin
RangeSum = RangeSum + Range [x];
end;

This for loop will iterate through the statement block 6 times (5, 4, 3, 2, 1, 0).

To break out of aloop prior to the completion of al iterations, add a conditional statement that setsthe for
loop variable to its maximum or final value.

Usage Example:
For valuel = 0 to 4 begin
if Close[valuel] > Close[valuel + 1] then
Valuel = 4;
end;

50

While Loop EasyLanguage Essentials Programmers Guide

While Loop
A while loop repeats one or more statements while some condition is true or false. If the condition at the
beginning of the while loop is never true, the while loop will never execute.

Usage Example:
while Valuel = 0 begin
Value2 = Value2 + 1;
if Value2 > 100 then //infinite loop test
Valuel = 1;
end;

Repeat/Until Loop

Therepeat/until statementissimilar tothewhile loop, however, withthe repeat statement the con-
ditional test occurs after the loop. The program statement(s) which constitute the loop body will be executed
at least once.

Usage Example:
repeat
Valuel = Valuel + 1
until Valuel = 1;

There is no need to use the begin/end keywords to group more than one program statement in a repeat/
until loop, asal statements between repeat and until are treated as a block.

Infinite Loop Detection

It is always a good idea to build your own logic to avoid infinite loop situations like in the exampl e above.
Thiswill helpavoid arun-timeerror. If youinadvertently create aninfiniteloop, EasyL anguage hasan internal
check that will stop execution after approximately 30 seconds. Thiswill cause arun-time error, stop execution
of the study, and turn the study status to off.

Theremay betimeswhen you don’t want EasyL anguageto break execution for aninfiniteloop detection event.
Y ou can turn off infinite loop detection with an Attribute switch.

Usage Example:
[InfiniteLoopDetect = FALSE];
Thisturns off the infinite loop detection attribute.

Infinite loop detection logic will always be enabled by default, that isif no attributeis present, detection logic
will be enabled.

Output Plot Statement 51

Output

EasyL anguage gives you several ways to output data, indicator values, and conditional comparisons. These
output options allow you to display and analyze information in Chart Analysis, RadarScreen, and OptionSta-
tion. You can also output values to check and debug your EasyL anguage code.

Plot Statement

Displaying indicator values in Chart Analysis, RadarScreen, or OptionStation requires the use of plot state-
ments. In charting, plot statements draw lines or points based on the numeric Y -axisval ue specified. However,
both RadarScreen and OptionStation allow for the plotting of numeric, text, and true/false values. Plot state-
ments are not allowed in strategies.

The basic structure of aplot statement for an indicator:
PlotN: PlotN (numeric expression, "plot name"); //(whereN =1to 99, no space)

Usage Examplel.
Plotl (Close, "The Close");

Usage Example2:
Plotl (High, "The High");
Plot2 (Low, "The Low") ;

In these examples, the numeric expression isthe value to be plotted at the y-axis of the chart, or displayed in
acell in RadarScreen or OptionStation. The plot name is used to identify the plot in formatting dialogs, data
tips, or as the column heading in RadarScreen or OptionStation.

Plot statements are used in indicators, ShowMe, and PaintBar studies. An indicator may contain a maximum
of 99 simultaneous plots.

The complete structure of a plot statement includes formatting parameters for foreground color, background
color, and width. These additional parameters are optional and generally not used to format a plot statement
because of other more flexible plot formatting functions.

The complete structure of aplot statement for an indicator:
PlotN: PlotN (numeric expression, "plot name", foreground color, background
color, width) ;

Usage Example:
Plotl(Close, "The Close", Red, Default, 3);

Not all parameters apply to all apPI ications: Chart Analysis does not allow background color changes and Ra-
darScreen has no concept of width.

Note: Itisgenerally more useful to set colorsand width for anindicator conditionally based on some technical
condition than to hard-code colors in the plot statement. There are three reserved words that can be used for
this purpose: SetPlotColor, SetPlotBGColor, and SetPlotWidth.

52

Plot Reference EasyLanguage Essentials Programmers Guide

Plot Reference
Once you have defined aplot using the P1 ot N reserved word, you can reference the value of the plot in other
Easyl anguage statements.

Usage Example:
Plotl (Average (Close, 10), "Avg Close");
if Close crosses above Plotl[l] then Alert;

Inthisexample, thereservedword P1ot 1 isusedtodisplay an average. Thevaueof theplotisalsoreferenced
in the next statement in order to write the alert criteria. This alows you to historically reference plot values.
Notice that the plot reference above is for the previous bar value of the plot statement.

PlotPB

TheP1ot PB statement isaspecialized plot statement that isusedin PaintBar studies. It instructs TradeStation
whereto draw on abar so that the bar is painted adifferent color from the other bars based on some conditional
criteria. PlotPB can al so be used to display valuesin Radar Screen. PlotPB can only beused in PaintBar studies.

The structure of a PlotPB statement for a PaintBar is:
PlotPB: p1otPB (Price Point, Price Point, "plot name");

Usage Examplel (paint full bar) :
if Close > Close[l] then

PlotPB (High, Low, "Up Bar");

Usage Example2 (paint top half of the bar):
if Close > Close[l] then

PlotPB (High, High - Range * .5, "Up Bar");

In these examplesthe reserved word P1 ot PB is used to paint the bars, or aportion of the bar, adifferent color
based on a specified condition.

Usage Example3 (paint entire bar and set color):
if Close > Close[l] then

PlotPB(High, Low, "Up Bar", Cyan);

Inthese examplesthereserved word P1 ot PB isused to paint the bar adifferent color and the color is specified
in the PlotPB statement.

Output NoPlot 53

NoPlot

TheNoPlot statement removes a specified drawn plot from the current bar. It is most often used to remove
ShowMe or PaintBar plots that are no longer true on the current in-progress bar. If a ShowMe or PaintBar
condition is true on the real-time in-progress bar, but during the same bar becomes false before the close of
the bar, the drawn ShowMe or PaintBar can be removed with NoPlot.

The structure of aNoPlot statement for an indicator is:
NoPlot: NoPlot (plot number) ;

Usage Example:
if (High < Low[1]) Then
Plotl (Low[1], "GapDown")
Else
NoPlot (1) ;

ThisShowM eexamplemarksthelow price of agap-down bar, but removesthe ShowMemarker if thecondition
isno longer true on the real-time bar.

Usage Example:
if Close > Average(Close,10) then
PlotPB(High, Low, "Up Bar")
Else
NoPlot (1) ;
This PaintBar example paints the entire bar if the Close is greater than the average Close but removes the

PaintBar if the condition is no longer true on the real-time bar. Y ou may use number 1 to refer to a PlotPB
statement in the NoPlot parameter.

Displacing Plots

Displacing plots allows you to visually move any analysis technique plots left or right on the chart by some
number of specified bars. A positive number moves the plot to the left and a negative number moves the plot
to theright. Space to theright of the last bar must be sufficient to accommodate the displaced plots or an error
will occur.

The structure of aNoP1lot statement for an indicator is:
Plot1[+/-N] Square brackets after the Plot statement are used to indicate the number of barsto displace the
plot left or right. Positive = |eft and Negative = right.

Usage Examplel (displacing a plot into the future):
Plotl[-5] (Average (Close,5), “avg close”);

Usage Example2 (displacing aplot historically):
Plot1[5] (Average (Close,5), “avg close”);

These examples move the plot right and | eft, respectively, on the chart.

54

Conditional Plot Formatting EasyLanguage Essentials Programmers Guide

Conditional Plot Formatting

Conditional plot formatting, sometimes called “smart styling”, is the ability to change the color or width of a
plot based on a specified price or indicator criteria. Each of the plotsin an indicator can be conditionally set
to change color and width based on your criteria on a bar-by-bar and real-time basis.

The three reserved words that conditionally set plot styling are:
SetPlotColor (PlotNum, Color) (Charting, RadarScreen & OptionStation) changes the plot fore-
ground color for the specified plot number to the specified color. There are 16 standard colors available
in Easyl anguage al ong with the 16-million color palette.
SetPlotWith(PlotNum, Width) (Charting only) changes the plot width for the specified plot number
to the specified width. There are 7 widthsin the charting application: O-thinnest to 6-thickest. Radar-
Screen and OptionStation have no concept of width.
SetPlotBGColor (PlotNum, Color) (RadarScreen & OptionStation) changes the plot background
color for the specified plot number to the specified color. Chart Analysis has no concept of background
color and the SetPlotBGColor command isignored.

Usage Example:
if Close > Average (Close,10) then
SetPlotColor (1, Cyan)
else
SetPlotColor (1, Red);
Plotl (Average (Close, 10), "MovAvg") ;
In this example, the plot color changes from red to cyan based on the close being above or below the average
close.

Usage Example:
if Volume > Average (Volume,10) then
SetPlotWidth (1, 4) // Thicker
else
SetPlotWidth (1, 2); // Thinner
Plotl (Average (Close, 10), "MovAvg") ;

Inthisexampl e, the plot width changesfrom thick to thin based on thevolume being aboveor bel ow theaverage
volume.

Usage Example:
if Close > Average(Close,10) then
SetPlotBGColor (1, DarkGreen)
else
SetPlotBGColor (1, DarkRed) ;
Plotl (Average (Close, 10), "MovAvg") ;
In this example, the plot background color in RadarScreen or OptionStation changes from dark green to dark
red based on the close being above or below the average close.

Output 16 Million Colors 55

16 Million Colors

The colorsto plot or display in EasyLanguage are set by referring to a RGB color value. Each of the unique
16 million colorsavailable havethree color components; Red, Green, and Blue (RGB). These three component
valuescombineto represent the overall RGB color valueto be displayed. The valuesfor each color component
range from O (darkest) to 255 (lightest) and can produce the 16 million color combinations.

Concept Examples (RGB Color Codes):
Red(255), Green(255), Blue(255) = White
Red(0), Green(0), Blue(0) = Black
Red(255), Green(0), Blug(0) = Red
Red(255), Green(255), Blue(0) = Yellow

Usage Example:
Valuel = RGB (0,255,255);

SetPlotColor (1, Valuel);
Plotl (Close, “Close”);

Inthisexample, theRGB functionisused to specify the col or Cyan by supplying thethree RGB col or component
parameter. The RGB function returns a 16 million color vaue that can be used to specify plot colors.

Note: The Other button on the Color tab of the Format~Indicator dialog allows you to view the 16-million
color palette and to see the RGB color codes.

Color Gradients

TheGradientColor reserved word returns acolor, between two specified colors, based on avalue within
aspecified range of values. Thisalowsindicatorsto display detailed levels of intensity and relative compar-
isons.

Usage Example:
Valuel = SlowK(14);

Value2 = GradientColor(Valuel, 0, 100, Cyan, Red);
SetPlotColor (1, Value2);
Plotl (Valuel, “SlowK”) ;

In this example, the GradientColor function returns a color between Cyan and Red, based on the value
of the SlowK function within the range of 0to 100. As SlowK gets closer to 0, the color returned gets closer
to Cyan; as SlowK gets closer to 100 the color returned gets closer to Red.

TradeStation also has a simpler color system using 16 standard colors. Y ou can use one or both systemsin
your color selection. The standard 16 color constant keywords will return the appropriate RGB color code
(e.g. Blue, Red, Yellow, Cyan).

56

Legacy Predefined Colors EasyLanguage Essentials Programmers Guide

Legacy Predefined Colors

Each of the standard 16 color constant keywords returns the appropriate RGB color value. In the previous
versionsof Easyl anguage, these 16 standard col or keywords used abasi c numbering system (1 to 16) to specify
acolor (see below).

To use thislegacy color numbering system you can set the LegacyColorValue attribute to true, and the
color constant keywords will return their former legacy value.

Usage Example:
[LegacyColorValue = True]

SetPlotColor(1,2); // 2 = Blue in the legacy color system

Plotl (Close) ;
In this example, the LegacyColorValue attribute is set to TRUE so that the number 2 color value refersto the
color Blue in the old numbering system.

Note: The LegacyColorValue attribute isaswitch that is set once at verify time and is used when the standard
color valuesare needed. If you do not usethe L egacyColorValue attribute, the color system usesthe 16 million
RGB color values by default.

Color Legacy Vaue RGBVaue
Black 1 0
Blue 2 16711680
Cyan 3 16776960
Green 4 65280
Magenta 5 16711935
Red 6 255
Yelow 7 65535
White 8 16777215
Dark Blue 9 8388608
Dark Cyan 10 8421376
Dark Green 11 32768
Dark Magenta 12 8388736
Dark Red 13 128
Dark Brown 14 32896
Dark Gray 15 8421504

=
(o]

Light Gray 12632256

Output Alerts in EasyLanguage 57

Alerts in EasyLanguage

Alertsallow anindicator to generate an audio, visual, or email notification triggered when a specific condition
or set of conditionsis met. Alertsare only triggered on thelast bar in the chart. Alert criteria can be evaluated
on every tick if the market is open.

Touseadertsrequirestwo actions: 1) theindicator must contain the alert criteriaand thereserved word Alert
must appear in the code; 2) the alert setting must be enabled within the Chart Analysis, RadarScreen, or Op-
tionStation window. Thisis done from the Format~Indicator~Alert tab. The default Alert settings can be set
in the PowerEditor properties dialog.

Usage Example:
if Close > Highest (Close, 10) [1] then
Alert;
if Close < Lowest (Close, 10) [1] then
Alert;

In thisexample, an Alert would betriggered if the Close of thelast bar, or any real-time price on the last
bar, is greater (less) than the highest (lowest) close for thelast 10 bars.

Note: In the above example, with the market open, the alert would trigger on every tick above the Highest
Highfor ten bars, potentially generating hundreds of alerts. Thismulti-alert issue can be addressed inthe al ert
settings or within the Easyl anguage code.

Thealert reserved word also allows you to specify a descriptive message that describes the conditions that
triggered theal ert. Thismessage can bedisplayedintheAlert box, sentwithanemail, andloggedintheMessage
Center. Alert descriptions are optional but very useful when there is more than one aert criteria.

Usage Example:
if Close > Highest (Close, 10) [1] then
Alert ("A New High has been hit for ” + GetSymbolName) ;
if Close < Lowest (Close, 10) [1] then
Alert ("A New Low has been hit for ” + GetSymbolName) ;

In this example, atext alert description is added to the Alert keyword. The Get SymbolName reserved
word is used to add the symbol name to the alert message.

In TradeStation, all alerts are logged to the Message Center. Y ou can also customize the visual and sound
stylesof your alert notifications. Most built-in indicators, ShowMe and PaintBar studies contain Alert instruc-
tions.

Note: TheAlert reserved word cannot be used in a strategy.

58

CheckAlert EasyLanguage Essentials Programmers Guide

CheckAlert

The Checkalert reserved word allows you to optimize your Alert code so that the alert conditions are not
evaluated on every bar but only on the last bar in the chart and only if the Alert is enabled in the window.

When the Alert isenabled and cal cul ations are being processed on thelast bar on the chart, CheckAlert returns
avalue of True. CheckAlert will return avalue of False for all other barsin the chart, and on the last bar of
the price chart if the Alert is not enabled.

Usage Example:
if CheckAlert Then begin
if Close > Highest (Close, 10) [1] then
Alert ("A New High has been hit for ” + GetSymbolName) ;
end ;
Inthisexample, the Alert code sectionisignored unless CheckAlertisTrue, (the Alertisenabled inthewindow
and the calculation bar isthe last bar in the chart.)

Enabling the Alert in the Window

The Format~Indicator~Alerts tab lets you enable an Alert and set the Alert notification styles.

Format Indicator: Mov Avg 1 Line

General | Inputs | Alets | Stde | Color || Scaling | Advanced

T:b'e ’Tje” L Note: An alert can be enabled to trigger:
e 1. Once per bar the disable the alert
© et ance per baxr terval) 2. Once per bar and re-enable the alert

3. Multiple time per bar
() Alert cortinuously

Use the following M Center notification settings: .
o o s Alertsin RadarScreen generally do not use the au-

dio and visual notification system.

(7 None ffor use when scanning for alerts in RadarSereen)

(%) Use the global messaging preferences:

lesiol e s Y ou can import and sound to be used as the audio
Type Curment setting aert notification.
Audio Beep
Visual Show pop-up window for 15 seconds
< »

Preview

Edit Easylanguage. ..] [QK] [Cancel] [Help

Output Print Statement 59

Print Statement

The Print statement allowsyou to output price, variable, function, reserved word, and text values from any
analysis technique to the Print L og tab of the Easyl anguage Output Bar. This allows you to output data or
check cal culations on abar-by-bar basisfor reporting or debugging purposes. It can a so be used to send values
to atext file or aprinter.

The Print statement allows you to specify an expression list which can include numeric, true/false, or text
string values (or any combination). Print can be used multiple times within a study, and each print statement
includes an automatic carriage return during output. The Print Log can contain an entry for each historical bar
in the chart after MaxBarsBack.

Warning Note: For indicators or strategies that update intra-bar, each new tick causes the analysis technique
to calculate and the print statement to be processed and values appended to the Print Log. This can be a sub-
stantial resourcedrain onyour computer. Itisrecommended that you comment out or del eteany print statements
when operating in a real-time environment.

Usage Example:
Print (" Symbol ", Symbol, " Date ", Date:7:0, " Time ", Time:4:0, "
Close ", Close);

In this example, the Print statement is a comma separated list of data fields each preceded with atext label to
more easily identify thedatavaluein the print log. The additional spacesinthetext labelshelp alignthevalues.
The Date and Time datafields use numeric formatting to specify the number of digitsto the right and left
of the decimal place.

EasyLanguage Output Bar - Print Log

The EasylL anguage Output Bar isaccessed through the View~Easyl anguage Output Bar menu. The Print Log
tab displays output from the Print statement. Y ou can scroll through the data in the window from the right
scroll control. The right-mouse-button menu allows you to clear the contents of the Print Log window.

X Symbol MS5FT Date 1070116 Time 1800 Close 31.15 SLowK 31.75
Symbol MS5FT Date 1070117 Time 945 Close 31.30 SLowK 50.00
Symbol M5FT Date 1070117 Time 1000 Close 31.3% SLowK &7.42
Fymbol M3FT Date 1070117 Time 1015 Close 31.36 SLowK TT.E8
Fymbol M3FT Date 1070117 Time 1030 Close 31.30 SLowK T5.00
Gymbol MSFT Date 1070117 Time 1045 Close 31.36 SLowK T2.:22
Symbol MSFT Date 1070117 Time 1100 Close 31.31 SLowK &7.359

£
| 41> 11\ verfy A_Find In Fies A Print Log /

Print Log Tab of the EasyLanguage Output Bar

60

Print to File EasyLanguage Essentials Programmers Guide

Print to File

TheFile reserved wordisamodifier to the Print statement. It allowsyou to send a print statement expression
to aspecified text file. Just like the Print Log, datais output on a bar-by-bar line-by-line basis, with a carriage
return at the end of each expression. The word File must appear first in the statement, followed by the path
andfilenamefor thefileyouwishto create. Thiscreatesasimpletext filethat can beaccessed for other external
applications and viewing.

The text file can contain an entry for each historical bar in the chart after MaxBarsBack, and if the analysis
technique is set to update intra-bar, anew entry will be appended to the filefor every real-timetick. Eachtime
the analysis technique is re-verified or reloaded into the chart, the file is recreated and overwritten.

Usage Example:
Print (File(“c:\test.txt”), “Date “,Date:7:0,“ Last ”,Close);

In this example, the Fi1e modifier specifies the complete path and file name to create and append.

File Append

Thereservedword File Append sends datato an existing text file specified in the File Append statement
and then appends the information to the bottom of thefile. If the file does not exist, it will be created, but File
Append never overwrites an existing file, it smply adds information to the end of afile.

File Append doesnot usethe Print statement and the output expression must bein theform of atext string.
A carriagereturnisnot automatically added to the end of each line, but you canincludethe NewL ine reserved
word to add a line return to each new entry.

The text file can contain an entry for each historical bar in the chart after MaxBarsBack and will append an
entry for every real-timetick if the analysis technique is set to update intra-bar.

Usage Example:
FileAppend("c:\testl.txt", NumtoStr (Date,0) + Spaces(2) + Num-

toStr(Close,2) + Newline) ;

In this example, the File Append command specifies the complete path and file name to create and append.
The text string combines the date of each bar with the close of each bar, a couple of spaces, and a NewLine
string at the end. Since atext string isrequired, the numeric values are converted to text stringswith the Num-
toStr reserved word.

To commadelimit an output file, add + “,” + to any text expression between data values.

Note: Yyou cannot use the File modifier within a Print statement and File Append in the same study, you must
chose only one file output mechanism.

Output File Delete 61

File Delete

The reserved word FileDelete deletes a specified text file from the disk. Y ou must specify the full path
and file name.

Remember that statementsare eval uated on every bar and possibleon every tick. Generally, FileDel eteisplaced
conditionally in your code and executed only once or when needed.

Usage Example:
Once (BarNumber = 1) then
FileDelete ("c:\test.txt") ;

Inthisexample, the once command eval uates the condition and executes the File Delete command only once
at the beginning of the chart calculations.

Print to Printer

Thereserved word Printer isamodifier to the Print statement, it allows you to send a print statement ex-
pression to the default printer. Just like the Print Log, datais output on a bar by bar line by line basis, with a
carriage return at the end of each expression. The word Printer must be the first expression listed in the print
statement followed by a comma, and then the rest of the labels and datafields.

Just likethe Filereserved word, if an analysistechniqueisapplied to achart with 5000 bars, the Print statement
will send one line to the printer for every bar on the chart, thefirst printout will consist of 5000 lines, then, as
datais collected real-time, one line may be sent to the printer for each real-time tick update.

Usage Example:
Print (Printer, “ Date "“,Date:7:0,"“ Last ”,Close);

Important Note:

Using File, File Append, and Printer reserved words for data output are all extremely processor intensive and
can cause severe resource issues, especially with very active symbols updating real-time. It may be useful to
turn off “Update Intra-Bar” cal culationsfor your analysistechniquesuntil you haveafeel for thisfunctionality.

Analysis Commentary

Analysis Commentary is a unique output mechanism that allows any analysis technique to send price data,
calculated values, and other information to the Analysis Commentary window onrequest. The Analysis Com-
mentary window isaccessed by clicking on the Analysis Commentary toolbar icon fromwithinthe Chart Anal-
ysis, RadarScreen or OptionStation windows, then clicking on a specific bar or cell.

When Commentary is requested for a specific bar, the analysis technique is recalculated for the entire chart
up to the requested bar, then stops, and brings up the Commentary window. While the window is open you
can click on other bars to view the Analysis Commentary data for other specific bars.

62

Commentary EasyLanguage Essentials Programmers Guide

Commentary

TheComment ary reserved word sendsatext and numeric expressionlist tothe AnalysisCommentary window
for whatever bar is selected on the price chart. Y ou can use the Commentary reserved word multipletimesin
the same analysis technique.

Unlike the Print statement, Commentary does not add a carriage return after the expression list.

Usage Example:
Commentary(“Date: ”, Date, “ Time: “, Time, “ Close: “, Close);

Usage Example:
Commentary(" Date: ", Date:7:0, " Range: ", Range, NewLine);
Commentary(" Time: ", Time:4:0, " SlowK: ", oSlowK, NewLine) ;

In this example, the NewLine reserved word is used to add aline return to the output.

B Analysis Commentary for Char... gl
&d e B

BSFT 5 min [NASDAQ] Microsolt Corp- 11122007
1340

Stoachattic Slow (Iadicator):
Diate: 1070112 Fange: 0.01
Time: 1340 Slowk: 57.14

lmporant: T window i abie 1o dizplay commerary gl
b phat s ot 2 pronided by peind paoie: teougk sofheard
that & compatible with the Tradeliaticn pafform. There & no
affiliaticn behewem Trodefiation ond amy provider of such
rommernary, and TradeSiancn e mo opirsion of oy G
regaraing the value or gustine af awy commpuary. Mo pormicular
commarney of avgy ard o recommmsinded o endorzed by
TFradeSraian

Commentary and HTML

The Commentary output window isan HTML control, and you can embed just about any standard HTML tag
and code into the Commentary statement to enhance the output; for example: set font properties, display a
picture, play amultimediafile, create atable, or include aweb link.

Note: The brackets <> are required in the commentary syntax.

Output Common HTML functions 63

Common HTML functions
To create link to aweb page in a separate window.
Commentary ("<a HREF = 'http://www.tradestationsupport.com'") ;

Commentary ("target = ' blank' > click here ");

To display an image in the Commentary window.
Commentary (" ") ;

To play asound n number of times.
Commentary ("<BGSOUND SRC='c:\temp\chime.wav' LOOP=2>") ;

To play asound 1 time with amouse click.
Commentary ("");

Commentary (" click here ");

To play amultimediafile in a separate window with a mouse click.
Commentary ("<a HREF = 'http://www.tradestationsupport.com") ;

Commentary ("/resources/08 00/tutorials/tours/movie data windows.htm!'
")
Commentary ("target = ' blank' > click here ");

To use bold text.
Commentary ("This is sample Text", newline) ;

To useitalic text.
Commentary ("<i>This is sample Text</i>", newline) ;

To use underlined text.
Commentary ("<u>This is sample Text</u>", newline);

To change the text color.
Commentary ("This is sample Text") ;

To change the text size.
Commentary ("This is sample Text") ;

To create a scrolling message.
Commentary ("<MARQUEE> Alert </MARQUEE>") ;

To create a horizontal line and set the thickness and color.
Commentary ("
<HR SIZE= 5 COLOR='blue'>");

64

AtCommentaryBar EasyLanguage Essentials Programmers Guide

AtCommentaryBar
The At CommentaryBar reserved word returns avalue of true only on the bar clicked by the user with the
Analysis Commentary pointer, and will return avalue of false for all other bars. This allows you to optimize

analysis techniques with Commentary, since all commentary-related cal culations can be skipped until a bar
isclicked.

Usage Example:
if AtCommentaryBar Then
Commentary (“*The 50-bar vol avg: ”, Average(Volume, 50)) ;
CommentaryEnabled

Thereserved word CommentaryEnabled issimilar to AtCommentaryBar in that CommentaryEnabled re-
turns avalue of true for ALL bars when the Analysis Commentary window is open, not just the calculation
bar. Thisis used when the Commentary output requires accumulation type calculations on every bar.

Usage Example:
For example, the following statements cal culate a cumul ative up/down volume line to be displayed in the
Analysis Commentary window:
if CommentaryEnabled Then begin
if Close > Close[l] Then
Valuel = Valuel + Volume
Else
Valuel = Valuel - Volume;
Commentary (“The value of the U/D line is: ”, Valuel);
end;

Inthisexample, the up/down volume cal cul ations can be performed on every bar when commentary isenabl ed.

Output Multimedia and EasyLanguage 65

Multimedia and EasyLanguage

Y ou can include asound (.wav) file or avideo file (.avi) in any of your trading strategies, analysistechniques,
or functions. Common uses of audio and video include aerts and commentary. Y ou can write your analysis
techniques so that when an alert istriggered, a video and/or a sound file is played.

PlaySound

The P1laySound reserved word plays a specified sound file (.wav file) from a specific location. Thisis gen-
erally used when an alert conditionismet. To usethisreserved word, you must assignit to atrue/falsevariable.
PlaySound returns a value of trueif it was able to find and play the sound file, and it returns a value of false
if itisnot ableto find or play it.

Usage Example:
Vars: intrabarpersist Played (FALSE) ;

if LastBarOnChart AND Played = FALSE then
Played = PlaySound(“C:\windows\buzzer.wav”) ;

It is recommended that you use PlaySound only on the last bar of the chart or on bars where the Analysis
Commentary isprocessed. Otherwise, you may find that the .wav fileisplayed more often than intended. Also,
in the example above the PlaySound will only play once, but you could have the variable reset each bar.

Play Movies

EasyL anguage allows you to play a movie clip in a pop-up window when some conditional criteriais met.
LikePlaySound, itisimportant to restrict thisfeature so that it does not inadvertently play many times. Playing
video files (.avi file) from EasyL anguage requires using a combination of three reserved words. The process
involves building or chaining together one or more video clips (.avi files).

Thefirst step isto obtain avideo clip ID number for each video clip that you will be playing. Next, specify
what .avi file(s) will make up the video clip. Finaly, play the resulting video clip.

The three reserved words that are used to create video clips are:

M akeNewM ovieRef - creates a new video clip object and returns the Movie ID number of the new
video clip. You must assign this reserved word to a numeric variable to call this reserved word and save
the reference ID number. Once you create the video clip object and ID, you can chain one or more
movie .avi filesto it using AddToMovieChain.

AddToM ovieChain - this reserved word adds or chains .avi filesto an existing video clip object and
returns a true/fal se val ue representing the success of the operation. You must assign this function to a
true/false variable to call this function.

PlayM ovieChain - plays avideo clip and returns a true/fal se expression representing the success of the
operation. You must assign this function to a true/false variable to cal this function.

66 Play Movie Examples EasyLanguage Essentials Programmers Guide

Play Movie Examples
Usage Example:
Vars: intrabarpersist Played (FALSE) ;
Once (Barnumber = 1) begin
Valuel = MakeNewMovieRef;
Conditionl = AddToMovieChain (Valuel, “C:\windows\clock.avi”) ;
end;
if LastBarOnChart AND Played = FALSE then
Played = PlayMovieChain (Valuel) ;

In this example, anew movie object is created, avideo clip is added to it, and then played. Creating the video
clip is done only once at the beginning of the chart. Here the movie will only play once, but you could have
the variable reset each bar.

Usage Example:
Vars: intrabarpersist Played(FALSE) ;
Once (Barnumber = 1) begin
Valuel = MakeNewMovieRef;
Conditionl = AddToMovieChain (Valuel, “C:\windows\clock.avi”) ;
Conditionl = AddToMovieChain (Valuel, “C:\windows\clock.avi”) ;
end;
if LastBarOnChart AND Played = FALSE then
Played = PlayMovieChain (Valuel) ;

In this example, a new movie object is created, two video clips are added to it, and then played.

Usage Example:

Vars: intrabarpersist Played (FALSE) ;

Once (Barnumber = 1) begin
Valuel = MakeNewMovieRef;
Conditionl = AddToMovieChain (Valuel, “C:\windows\clock.avi”) ;

end;

if AtCommentaryBar then

Played = PlayMovieChain (Valuel) ;

In this example, anew movie object is created, avideo clip isadded to it, and then played when Commentary
is activated by clicking on abar.

Creating Indicators Play Movie Examples 67

Creating Indicators

Analysis techniques are calculations and conditions based on market price data. In TradeStation, indicators
can be displayed in the Chart Analysis, RadarScreen, and OptionStation Analysiswindows. Built into Trade-
Station are most of the standard technical indicators used by traders today. Each of the built-in analysis tech-
niques is written in EasylL anguage and you can easily open and view the code.

There are five types of analysis techniques in TradeStation and each type has unique display properties that
allow for flexible analysis of historical data. The five types are:

Indicator

ShowMe

PaintBar

ActivityBar

Probability Map

When you apply an indicator to a price chart, the indicator can display values either on the price bars, orina
separate sub-graph. Where an indicator is displayed is determined by the scaling settings of theindicator. The
style of the indicator (line, dot, histogram) is also a property of the indicator.

TradeStation Chart Analysis - MSFT ... [55[i5] C]BX)

MSFT-15min NASDAQ L=30.40 -0.20 -0.65% B=30.40 , ...
|l 31.30
| d 31.10
i - FTR 30.90
N, -
| l[l 30.50
LN 30.40
Volume Avg (50,50,DarkCyan,Red 3290872.52
7,000,000
ﬂ*
(1IN |III|III|I|I|| ||||
12:00 1/25 12:00 1/26 12:00 1/29 12:00
£ >

For example, in this chart two moving averages are plotted as lines on the prices bars because the average
calculations y-axis scale is the same as the bar prices. The volume indicator scale is not based on bar prices
but volume. Sincevolumehasgenerally larger valuesand adifferent scalerangethan the pricebars, it isplotted
as a histogram in a separate sub-graph with its own y-axis scaling range.

68

Indicator Basics EasyLanguage Essentials Programmers Guide

Indicator Basics

In Chart Analysis, indicator values are calculated for every bar after MaxBarsBack and plotted at avalue on
they-axis, either on the price databarsor in aseparate subgraph. Anindicator can display up to 99 plot values,
but all plots must be in the same sub-graph.

Indicatorscanbedisplayedinavariety of styles: Line, Histogram, Point, Cross, or Bar Point. Y ou candetermine
the default color and line thickness for each indicator plot. Color and width can also be set conditionally from
EasyL anguage. Baoth plot style and scaling are properties of an indicator that can be set when an indicator is
created or applied to a chart. Plots can be drawn over the bars or in a sub-graph based on the price scale of
the indicator.

Indicator Templates

When creating anew indicator, you can choose from one of the pre-built code templatesthat comewith Trade-
Station. Templates are akind of fill-in-the-blank boiler plate that allows you to see the structure of different
types of indicators. Templates provide you with instructions on how to store numeric values into variables
and plot them in avariety of indicator styles. The instructions are included within comment braces{ } in the
code. They aso include instructions on how to trigger an alert based on true/false criteria.

Indicator Naming Conventions

Whenyou createyour ownindicators, thefirst thing you needtodecideonisaname. Choosing therightindicator
name can be important. It should be descriptive and have a unique character identifier to differentiate from
the built-in TradeStation indicators.

Concept Examples: (Indicator Names)
IMov Avg 5 Line
#my RS
$Volume Weighted

Each of these example would appear at the beginning of the indicator list since the unique character identifier
(! #9$) would alpha sort to the top. Thisis agreat way to group and find your custom indicators easily.

Determining Application Availability

When you create an indicator, you need to determine which analysis windows the indicator will work with.
By unchecking those analysis windows where the new indicator will not be used, you prevent the Insert In-
dicator dialog in those windows from being cluttered with indicators that are not appropriate.

Creating Indicators Indicator Code Structure 69

Indicator Code Structure
To create anew indicator, click on the EasyL anguage navigation bar in the left-hand Shortcut Bar, then click
on the New Indicator icon. Specify aname, applications, and atemplate, then click OK.

Usage Example:
Plotl (Close) ;

Usage Example:
Plotl (Volume) ;

In these two examples, we can see an indicator in its simplest form. All that is required to output avalueto a
chart or RadarScreen is a plot statement. More complex indicators require additional syntax and structure.

Standard Code Structure

Built-in EasyL anguage indicators have a consistent structure that most new programmers should follow. A
consistent format will make it easier for you to follow your logic and stay organized.

Usage Example:
// Declare Input
Input:Length(9) ;
// Declare Variables
Vars:Avg(0), AlertCond(false);
// Calculate and Assign Values to Variable
Avg = Average (Close,Length); // Call Average Function
// Create Alert Criteria and Assign to Variable
AlertCond = Close Crosses Above Avg OR Close Crosses Below Avg;
// Plot Moving Average Value
Plotl (Avg, "Avg") ;
// Create and Test Alert Condition
if AlertCond then Alert;

Hereisthe structure of avery typical EasyL anguage 1-line moving average indicator. It incorporates most of
the basic elements used in creating indicators. Thisindicator cal culates and plots a 1-line moving average and
alerts when the close crosses above or below the average.

Note: The comment lines in the code (preceded with //) allow you to add inline notation to your code.

70 Standard Code Structure EasyLanguage Essentials Programmers Guide

In addition to the basic indicator syntax, EasyL anguage provides many additional functions and features that
alow you to create, test, and output almost any analytical ideayou may have: changing plot colors based on
acriteria, drawing trendlines, counting events, running amacro, pattern recognition, and many other powerful
and useful tools.

Usage Example:
// Declare Inputs
Input:Length(14), OverBought (80), OverSold(20) ;
// Declare Variables
Vars:SlowkVal (0), AlertCond(false);
// Calculate and Assign Values to Variable
SlowkVal = SlowK (Length); // Call Stochastic SlowK Function
// Create Alert Criteria and Assign to Variable
AlertCond = SlowkVal Crosses Above OverSold OR
SlowkVal Crosses Below OverBought;
// Plot Stochastic Value and Reference lines
Plotl(SlowkVal, "SlowK") ;
Plot2 (OverSold, "OS");
Plot3 (OverBought, "OB") ;
// Create and Test Alert Condition
if AlertCond AND LastBarOnChart then Alert;
// Create Smart Style Plot Coloring
if SlowkVal > OverBought - 5 then
SetPlotColor (3, Magenta) ;
if SlowkVal < OverSold + 5 then
SetPlotColor (3, Cyan);

In this example of atypical EasylLanguage Stochastic Oscillator indicator, we have incorporated all of the
basicindicator syntax elementsused in creating indicators. Thisindicator cal culatesand plotsthe SlowK value
along with two horizontal reference lines at 20 and 80. It also incorporates the SetPlotColor reserved word to
conditionally set the plot color based on its value.

Creating Indicators Multi-Data Indicators 7

Multi-Data Indicators

Each Chart Analysis window may contain up to 50 unique time-based data sets that can be referenced from
EasyL anguage. These data sets can be different symbols or the same symbol at different bar intervals or a
combination of both.

The only restriction is that you cannot create multi-data charts using tick or volume bar intervals. Only time
based (minute, daily, weekly, monthly) intervals can be used to create multi-data charts. Also, RadarScreen
and OptionStation do not support multi-data indicators.

TradeStation Chart Analysis - QQQQ ... ri‘-—*| rl— _ E|E|

QQQQ - 15 min NASDAQ L=43.64 0.07 0.16% B=43.64 A=43. ...
| 44 .40

4410
h 43.80

|
gl |||I|||Ill|'h||Ir|In|'ll |I|I||nnl”l L 5

SPY-15min AMEX L=142.23 0.07 0.05% B=14222 A=1422 ..
] 1
LT 143.50

Illltrl
I[)
ft | I Felbi
Spread - Diff (Close of data1,Close of data2) -98.59

|
U LG

Lrpretigrk

-98.59

1125 12:00 1126 12:00 1129 12:00
< E

Multi-data Chart and Spread Indicator

When you create achart, theinitial symbol in subgraph oneisassigned the designation Datal. Each additional
symbol or data set that is added to the window is assigned a reference data number, Data2 through Data50.
Additional data sets can be displayed in asub-graph or hidden from view. There are a maximum of 16 visible
sub-graphsin achart.

Datal is aways assumed unless specified otherwise.

72

Multi-Data Reference EasyLanguage Essentials Programmers Guide

Multi-Data Reference
Not only can you reference price data using the DataX reserved word, but you can also reference formulas,
functions, and other symbol-specific reserved words.

Usage Example:
Valuel = Average(Close, 10) of Data2;
Value2 = ((High + Low) * .5) of Data2;

Plotl (Value2 - Valuel, "Avg Spread");

In this example, we can calculate the 10-bar average and mid-price of data2 by calling the average function
and calculating the midprice withthe of data2 modifier. Almost any data-related information can be ref-
erenced in this manner.

Concept Example (Multi-Data Reference):
BigPointValue of Data2

GetSymbolName of Data2
SessionEndTime (1,1) of Data2

Data(n)

Thereserved word Data has an additional parameter that makesit easier to work with many multi-data-stream
elementsin asingle chart. The Data parameter is the data element you want to reference. This data reference
iswritten as Data(1), Data(2), etc. When written thisway, the data element number may be changed using an
input or avariable, and can be used within aloop to easily manage the calculations for many data streams.

Usage Examplel.
Input: DataNum(2) ;

Valuel = Close - Close Data(DataNum) ;
Plotl (Valuel, "Spread");

Usage Example2:
Valuel = 0;

For Value99 = 1 to 6 begin
Valuel = Valuel + Close Data(Value99) ;
end;
Value2 = Valuel / 6;
Plotl (Value2, "Index");

In these examples, the multi-data element is specified using data(n), where n is the number of the multi-data
element in the chart.

Plotting Indicatorsin Multi-Data Sub-graphs

An indicator can be plotted and based on any symbol in a chart window, and you can specify the subgraph
where you want to plot the indicator. These settings can be accessed from the Format Indicator~Scaling tab
once the indicator is applied to a chart.

Creating Indicators Indicator Properties in the PowerEditor 73

Indicator Properties in the PowerEditor

Each indicator has adefault set of propertiesthat dictate the behavior of the indicator once applied to a Chart,
RadarScreen, or OptionStation window. These propertiesinclude settings for scaling, color of the plots, real-
timeupdating, and many others. Thesedefault propertiesare setinthe PowerEditor and saved with theindicator
at creation time. Once applied, theses properties can be changed from the Format Indicator dialog.

Default Button: Each property dialog tab has a Default button. Click this button to apply the settings on this
tab as the default for this and all future analysis techniques of thistype. Generally, you won’'t need to change
these defaults unless you change the same setting over and over again.

General Tab

Onthistab, you can format the general propertiesof an analysistechnique/indicator column. The optionsavail-
able depend on the type of analysis technique/indicator column you are formatting and where it is located.
The following settings are available for all analysis techniques unless otherwise noted.

Base Sudy On: Allows you to insert indicators on any multi-data element. The calculations for the
indicator will be based on the price data in the specified data stream.

Note: Base Study On isonly available in the Format Indicator dialog in a chart and not in the PowerEd-
itor.

Maximum number of barsstudy will reference: Thisisthe MaxBarsBack setting for the indicator. By
default thisis set to Auto-detect. You can also set avalue for MaxBarsBack manually by entering a
number of barsin the edit box.

Update valueintra-bar: On by default. Uncheck this box if you only want to recal culate the indicator
only on the bar close event. (This option is not available for ActivityBars.)

L oad additional datafor accumulative calculations: Used only for RadarScreen and OptionStation to
provide amechanism for loading additional barsfor historical calculations. We will discussthismorein
the chapter on RadarScreen indicators.

Applications Tab

Use this tab to determine in which TradeStation applications your indicator will be available. Indicators that
are not designed for a particular application only clutter up the Insert Indicator dialog. Check only those ap-
plications that are appropriate for your new analysis technique.

Note: The Applications tab is only available in the PowerEditor, and not accessible in the Format Indicator
dialog.

74

Indicator Properties in the PowerEditor EasyLanguage Essentials Programmers Guide

Scaling Tab

Thistab is used to modify the scaling settings for the y-axis of an indicator in a Chart Analysiswindow or the
scaling propertiesof an EasyL anguagedocument. When appliedtoitsown sub-graph, they-axisdisplaysvalues
specific to the indicator.

AXxis

Scale On determines where on the chart and what axiswill be used for the indicator scale. If you choose
'‘Same Axis As Underlying Data,' the indicator will plot on the same sub-graph as the price data stream
(Symboal). If you select Right, Left, or No Axistheindicator will plot in asubgraph. In addition, you can
select the sub-graph number on which to plot theindicator. Selecting Hidden will cause the indicator not
to be displayed on any sub-graph.

Scale Type
Select either Linear or Semi-Log for the scale type of the plotted data.

Scale Range
Select the y-axis range of valuesto display.

Display
Determine how the y-axis values will be displayed.

Chart Color Tab
Use thistab to select the default colors for each of the indicator plotsin achart.

Chart Syle Tab
Use this tab to select the default width and style for each of the indicator plotsin a chart.

Grid Color Tab
Usethistabto select thedefault foreground and background colorsfor each of theindicator plotsin RadarScreen
or OptionStation.

Grid Syle Tab
Use this tab to select the default formatting of values for each of the indicator plots in RadarScreen or Op-
tionStation. Stylesfor grid applications include, Text, Date, Time, Number, Currency, and Percentage.

Note: See the TradeStation User Guide for more information on Properties Dialog.

Creating a ShowMe Study Indicator Properties in the PowerEditor 75

Creating a ShowMe Study

ShowM e studies place a dot on those bars that meets a specific condition or set of conditions. They are best
used when the objective of the analysisisto find aunique criteriathat normally happens once every so many
bars. ShowMe studies are invaluable tools for identifying chart patterns and conditions that can be the basis
for your strategy trading rules.

Writing aShowM e study is very similar to writing an indicator. By using the Plot statement inside atrue/false
IF condition, the Plot isonly executed and adot plotted on the bar when the criteriais met. A single ShowMe
study can have a single condition and plot, or multiple conditions and plot statements.

TradeStation Chart Analysis - SPY Daily [AMEX] &P D..[S] (1] [2])[E]X]
SPY - Daily AMEX L=114.10 +0.31 +0.27% B=114.10 A=...

Key Reversal Up & Dn
ShowMe

ShowMe Indicator

Usage Example:
if High > High[1l] AND Close < Close[l] Then
Plotl (High, “Key Rev Dn”) ;
if Low < Low[l] AND Close > Close[l] Then
Plot2 (Low, “Key Rev Up”);

In this example of a Key Reversal ShowMe, adot is plotted at the high of the bar for a down reversal and at
the low for an up reversal. Notice that in a ShowMe the plot statement specifies the value at which to place
the ShowMe on the y-axisin the chart. A ShowMe can be applied to RadarScreen as well.

76

Indicator Properties in the PowerEditor EasyLanguage Essentials Programmers Guide

NoPlot
When working with ShowM e studies with real-time datait is possible that the ShowM e condition will be true

for some of the time during the in-progress bar and false at other times during the same bar. Theissue is that
once a ShowMe is plotted on the chart the dot stays on the chart even if the condition becomes false for the
in-progress bar. To overcome this problem we use the NoPlot statement. The NoPlot reserved word alows
you to remove a plot from the current bar for the specified plot number. Thisis also useful in PaintBars and
other trueffalse situations.

Usage Example:
if High > High[1l] AND Close < Close[l] Then

Plotl (High, “Key Rev Dn”)
Else
NoPlot (1) ;
if Low < Low[1l] AND Close > Close[l] Then
Plot2 (Low, “Key Rev Up”)
Else
NoPlot (2) ;
In this example, if the key reversals are true and then become false on the same bar, the NoPlot will remove
the dot.

Note: If your ShowMe or PaintBar does not update tick by tick you do not need to use NoPlot.

ShowM e Plot Placement

The priceyou specify in the Plot statement isthe price on the y-axis on which the ShowMewill plot. Generally,
you will seethehigh, low, or close of the bar used becauseit is easy. But a ShowMe can place adot anywhere
along the y-axis: on the bar, aboveit, or below it.

Often, a ShowMe dot on the high or low of the bar blocks part of the bar data from view. To get around this,
you can specify a price for the ShowMe to be just alittle above or below the bar. By using the range of the
bar, the plot is placed correctly regardless of bar interval.

Usage Example:
if High > High[1l] AND Close < Close[l] Then

Plotl (High + Range * .25, “Key Rev Dn”)
Else

NoPlot (1) ;
if Low < Low[1l] AND Close > Close[l] Then

Plot2 (Low - Range * .25, “Key Rev Up”)
Else

NoPlot (2) ;

Inthisexample, the ShowMeisplaceat the high plus 25% of the bar range, moving the mark just alittle higher
so the entire bar is visible and at the low minus 25% of the bar range, moving the mark just alittle lower.

Creating a PaintBar Study Indicator Properties in the PowerEditor 77

Creating a PaintBar Study

PaintBar studies paint over those bars that meet a specific condition or set of conditions. They are best used
when the objective of theanalysisisto find aunique criteriathat istrue over aswatch of bars. PaintBar studies
areinvaluabletoolsfor identifying market modes and conditionsthat can be the basisfor your strategy trading
rules.

WritingaPaintBar study isvery similar towriting any other indicator. By using the specialized PlotPB statement
insideatrue/talse | F condition, the PlotPB isonly executed on those barswhere the criteriaismet. The PlotPB
statement requires two numeric values and paints between the two values, normally the entire bar (High to
Low), but you can specify any two points on, above, or below the bar.

TradeStation Chart Analysis - SPY Daily [AMEX] &P D...[S -] (1] [2[B)(%]
SPY - Daily AMEX L=114.23 +0.44 +0.39% B=114.23 A=...

Stochastic PaintBar -92.00

L L
L, [I
i | - I 80,00

-78.00

Oct
£ ¥

Paint Bar Indicator

Usage Example:
Input: Length(14), OvBought (80), OvSold(20) ;
Vars: SlowKval (0) ;
SlowKVal = SlowK (Length) ;
if SlowKVal > OvBought then PlotPB(High, Low, "SlowK", Red);
if SlowKVal < OvSold then PlotPB(High, Low, "SlowK", Blue) ;

In this example, the PlotPB statement specifies two values that define the painted area on the y-axis.

78

Indicator Properties in the PowerEditor EasyLanguage Essentials Programmers Guide

NoPlot
Just like a ShowMe, when working with PaintBar studies with real-time data it is possible that the PaintBar
conditionwill betruefor someof thetimeduring thein-progressbar and fal seat other timesduring thesamebar.

The NoPlot reserved word removes aplot from the current bar for the specified plot number. When used with
PaintBar plots (PlotPB), the NoPlot statement plot number is 1, 3, 5, etc. (see previous section on NoPlot).

Usage Example:
Input: Length(14), OvBought (80), OvSold(20);
Vars: SlowKval (0) ;
SlowKVal = SlowK (Length) ;
if SlowKVal > OvBought then
PlotPB (High, Low, "SlowK", Red)
else NoPlot (1) ;
if SlowKVal < OvSold then
PlotPB(High, Low, "SlowK", Blue)
else NoPlot (3);

In this example, if the Stochastic condition is ever true and then becomes false on the same bar, the NoPlot
will remove the PaintBar.

Note: If your PaintBar does not update tick by tick you do not need to use NoPlot.

PaintBar Placement

The two numeric prices you specify in the PlotPB statement are the prices on the y-axis to paint between.
Generally thisisthe high to low on the bar, but a PaintBar can paint anywhere on the y-axis, either on the bar,
aboveit, below it, or just part of it.

Usage Example:
Input: Length(14), OvBought (80), OvSold(20) ;

Vars: SlowKVal (0) ;
SlowKVal = SlowK (Length) ;
if SlowKVal > OvBought then

PlotPB(High, High - Range * .5, "SlowK", Red)
else NoPlot (1) ;
if SlowKVal < OvSold then

PlotPB(Low, Low + Range * .5, "SlowK", Blue)
else NoPlot (3);

In this example, the PaintBar paints only the top or bottom half of the bar when a condition is met.

Creating Trading Strategies What is a Strategy? 79

Creating Trading Strategies

What is a Strategy?

A strategy is a set of trading rules for programmatically entering and exiting trading positions. These rules
are generally based on technical analysisusing price action and volume, but can a so include fundamental and
external data. TradeStation providesthe mechanismto historically back-test strategies, evaluate historical per-
formance, optimize parameters, and automate real-world buy and sell orders.

An example of asimple strategy would be to Buy when a fast moving average crosses above a slow moving
average, and to Sell Short when the fast moving average crosses below the slow moving average.

Usage Example:
if Average(Close,9) Crosses above the Average(Close,18) then

Buy (*“MA2CrossLE”) next bar 100 shares at Market;
if Average(Close,9) Crosses Below the Average(Close,18) then
Sell Short (“*MA2CrossSE”) next bar 100 shares at Market;

TradeStation Chart Analysis - CSCO 5 min [NASDAQ] Cisco Systems (8] (17 [2][B][X]
CSCO-5min L=23.90 -0.29% 0=23.80 Hi=24.20 Lo=23.77 C=23.90 ...

-23.80
00
. egl00
MA2CrossSE 93 60
-100 -23.40

*LE Ma2CrossSE

MAECJ{:}LE : -100 123.20
,-100 MAECrus_sSE

100 MA2CrossSE
MA2Cross| E 1 -23.00
'|‘M[{|‘qu l{ﬂ, MA2CrossLE
t 100 9980
MA2CrossLE .
10:45 1210 13:35 '6/22 11:20 12:45 1410 ' 6/23
L ¥

The chart shows the moving average strategy.

80

Strategy Order Syntax EasyLanguage Essentials Programmers Guide

Strategy Order Syntax

Strategy orders are made up of several components, each designed to describe trading orders into the market
and/or for historical testing. The EasylL anguage syntax is similar to how you would describe an order to your
broker if you were placing an order by phone. Where some of the order syntax components are optional, others
arerequired for avalid order statement. Thetwo required componentsarethe Order Verb and the Order Action.

EasyL anguage uses four order verbs to identify the market action to be taken. These four order verbs work
the same way across all asset types.

Order Verbs
Buy: Establish or add to along position. Any existing short position will be covered entirely before the
long position is established. Two orders are generated.
SellShort or Sell Short: Establish or add to ashort position. Any existing long position will be lig-
uidated entirely before the short position is established. Two orders are generated.
Sell: Liquidates along position only. Can never establishes a short position.
BuyToCover or Buy To Cover: Cover ashort position only.

These four order verbs must be followed by the wordsnext bar, and one of four order actions:

Order Actions
next bar at Market: Market order at the open of the next bar or the next tick.
next bar Stop: Market order on the next bar when the stop price is reached. All stop orders in Easy-
Language are Stop Market.
next bar Limit: Limit order on the next bar if the limit price is reached.
thisbar on Close: Market order on the close of this bar, generally used for historical backtesting
purposes only. Thiswill not generate a market on close order.

Usage Examples:
Buy next bar at Market;
Sell Short next bar 50 Limit;
Sell next bar 50 Stop;
Buy to Cover this bar on Close;

Creating Trading Strategies Strategy Engine Calculations 81

Strategy Engine Calculations

In order to effectively write Easyl anguage strategies, it isimportant to understand the underlying calculation
engine and eval uation method that TradeStation uses to process your strategies. The next few topicswill look
at these concepts.

To reproduce how a strategy would have performed in the past, TradeStation uses a powerful strategy calcu-
lation engine that processes your rules against the historical datain the chart as well as real-time data when
the markets are open.

The strategy testing engine performs two basic functions, historical backtesting and real-time trading auto-
mation. Backtesting is the process of analyzing trading rules on historical dataand deriving historical profit-
ability results. Automation is the process of monitoring trading rules and generating real-time orders.

Whenastrategy isappliedtoapricechart, TradeStation eval uatesthe Easyl anguage codefromthefirst (ol dest)
bar on the chart after MaxBarsBack to the current (newest) bar on the chart. Strategy entries and exits are
displayed on the chart as blue and red arrows. Automated real-world orders can also be generated, but only
on the last bar and only if automation is turned on.

Conflicting orders are automatically handled by the strategy engine. If you areflat, and the strategy generates
a Sell order, itisignored. If you are long, and the strategy generates a Buy to Cover order, it isignored. The
strategy engineis designed to only process those orders that make sense for the current open position.

Strategies can evaluate strategy rules and generate orders based on one of two methods:

On Bar Close (default) - Historically and realtime, the strategy is calculated only once per bar at the
close of the bar. All orders are generated for the next bar. This means that even if your conditions
become true intra-bar, the strategy waits until the bar closes before generating orders. The orders gener-
ated have a one bar duration and are cancelled if they are not filled by the end of the next bar.

Intra-Bar - Historically, the strategy is calculated four times on each bar at the four price points on the
bar: open, close, high and low. In realtime, the strategy is calculated on atick by tick basis, generating
orders at that price where the conditions becomes true intra-bar. Orders have aone tick duration and are
then cancelled if not filled.

Note: In order to backtest intra-bar order generation, we need to add an additional data stream to the chart at
afiner resolution than the barsin the chart. Thisis called “look inside bar back-testing”, and can be turned on
the Format~Strategy~Properties dial og.

82 Intra-bar Order Generation EasyLanguage Essentials Programmers Guide

Intra-bar Order Generation

Intra-bar order generation allows strategy ordersto be generated on atick-by-tick calculation basis instead of
only at the close of a bar. Creating an intra-bar order strategy is exactly the same as a close of bar strategy;
it's only the calculation procedure which is different.

Intra-bar order generation can be turned on or off for each unique strategy applied to the chart, from the For-
mat~Stategy~Format~Cal culation dialog, or can be set on or off from within your strategy code. Different
strategies in the chart can cal culate close-of-bar and others can calculate intra-bar. The 'Enable intrabar order
generation and calculation’ checkbox allows users to control when orders should be generated.

Format Strategy: Bollinger Bands LE rgl

inputs | Entries | Exts | Caleulation

[#] Enable intmbar order generation and calculation]

() Lierst arirbea from gamee sigriald in thes. strabegy and mccts from
same sional in this strategy to once per bar

{{®) Lt sntries from il sigrials in this strategy and edts from al
sgnals in this stratagy 10 ancs per bar

{2 Miowe aery eniry from thes strategy and any et from this
strabagy 1o ootur multiphs times: par bar

Lok J[cocel |[teo |

When 'Enable intrabar order generation and calculation' is checked users will be able to choose whether fills
should occur more than once per bar.

Setting Intra-bar Order Generation Within your Code
Y ou can programmatically turn on or off intra-bar order generation using an attribute at the beginning of your
code. Attributes are switches set at the start of your code.

Usage Example:
[IntraBarOrderGeneration = TRUE]
if Close > Close[l] then

Buy next bar at Market;

Here the strategy will generate amarket order on thefirst tick that is higher than the previous bar close. When
intra-bar order generation turned on, next bar really means next tick.

Creating Trading Strategies Basic Strategy Code Structure 83

Basic Strategy Code Structure

Likeindicators, strategies have a consistent structure that most programmers follow. Take alook at the code
provided by the built-in strategies to see how strategies are written at TradeStation. Y ou can aso look at the
TradeStation EL support forumsto see how other users structure their strategy code.

Usage Example:

// Declare Inputs for flexibility and optimization
Inputs: MoLength(10), StopAmt(100), ProfitAmt (100);
// Declare Variables to hold calculated values
Vars: MoValue(0) ;
// Variable assignment stores the calculation
MoValue = Momentum(Close, MoLength) ;
// Buy condition
if MoValue crosses over 0 then
// Buy order
Buy (“*Mo LE”) 100 Shares next bar at Market;
// Sell Short condition
if MoValue crosses under 0 then
// Sell Short order
Sell Short(“Mo SE”) 100 shares next bar at Market;
// Set a safety stop loss for both long and short positions
SetStopLoss (StopAmt) ;
// Set a profit target for both long and short positions
SetProfitTarget (ProfitAmt) ;

In this code example we buy and sell short when momentum crosses above or below zero. The strategy also
uses built-in stops to exit with a fixed profit target or stop loss.

Y ou can build more complexity into your strategies by creating additional rules for buying and selling. Y ou
can also set your trade size programmatically and incorporate more complex money-management techniques.

84

Signal Names EasyLanguage Essentials Programmers Guide

Signal Names
Each strategy entry (Buy, SellShort, Sell, or BuyToCover) should be given an order name or signal name that
will appear on the chart. The signal name is specified in the order syntax, and is optional but recommended.

If nosignal nameisspecified, thedefault signal namefor theorder will betheorder verb: "Buy", “ Sell”, “ Short”,
or “Cover”.

When using multiple entriesand exitswithin astrategy, it isrequired to label each order signal with adifferent
name. By naming entry orders, you can easily identify what signal generated what position, both on the chart
and in the Strategy Performance Report~Trades tab. Also, naming the entry orders allows you to tie an exit
to aparticular entry order. When naming a strategy signal, try to use a descriptive name or code you can re-
member easily. Thesignal nameisset with quotation markswithin parenthesesimmediately after anorder verb.

Usage Example:
Buy (“*L1LE”) this bar on Close;
SellShort (“L1SE”) next bar at Market;

TradeStation Chart Analysis - @ES.D 5 min [CME] E-Mini S&P ... s -1~ Z i ad

@ES.D-5min L=1113.75 +0.09% O=1111.00 Hi=1116.26 Lo=1... |4446.00
|

0 i -1 11115.00
TRMLX L1SE
Lzms'F L1SE | Kiirxim
'ﬂ‘l III | llh‘ R ll -1113.00
L1SE

I | LJ_E g ihl“h L I-'_IJ]“-!-] 1112.00

| HI“‘I" ﬁﬂlll [1111.00
TRMSX t A

0 L1LE 11
0 - LiLEF1110.00

’1

-1109.00

-1108.00

2108 11:00 11:50 12:40 13:30 14:20
|

|~

Signal names appear above or below the order arrows in the chart.

Creating Trading Strategies Setting Trade Size in EasyLanguage 85

Setting Trade Size in EasyLanguage

To specify the number of shares programmatically within your strategy, EasyL anguage requires a qualifier
along with the trade size as part of the strategy order syntax. If the number of sharesis not specified within
the strategy, the trade size setting in the strategy properties dialog is used.

Usage Example:
Buy 500 shares next bar at Market;
Sell Short 10 contracts next bar at Market;

The number of shares or contacts to trade can also be a variable that can be programmatically calculated or
an input. For example, a money management entry trade size rule or an exit scaling out rule.

Usage Example:
Input: TrdQty(500);
Buy next bar TrdQty shares at Market;
Sell Short next bar TrdQty contracts at Market;

The reserved words shares and contracts arethe qualifiers, and must come after the number of shares
or contracts specified. These qualifiersare synonymous and can be used with all symbol types (Stock, Futures,
etc.). With Forex symbols, shares and contracts refer to lots.

Open Next Bar

Strategies, by default, calculate on the close of each bar and generate ordersinto the next bar. However, traders
often want to base their strategy rules on the open of the next new bar. Open Next Bar syntax alowsthe
calculation engine to delay the strategy calculation until the opening tick of the next bar, and alows you to
reference that opening price in your strategy conditions for orders on that same bar.

Usage Example:
Buy next bar at open next bar - .05 Limit;
(The syntax ‘Open Next Bar’ refers to the opening price of the next bar.)

In this example, we delay the strategy calculation with *open next bar’ until the opening tick and then
use that opening price in our order.

Y ou can aso reference the bar Time and Date stamp by using next bar syntax.

Usage Example:
if time next bar = 1500 then
Buy next bar at Open next bar - .05 Limit;

Inthis example, wecan use‘time next bar’ syntax to seethetime of the next bar.

Note: Y ou cannot mix next bar syntax with data streams other than datal. Also, you cannot mix ‘open next
bar’ and ‘this bar on close’ orders within the same strategy.

86

Strategy Position Reserved Words EasyLanguage Essentials Programmers Guide

Strategy Position Reserved Words

The EasylL anguage strategy engine keeps track of strategy position information and makes that information
available through reserved words. Position information includes: Entry Price, Exit Price, Bars Since Entry
and Exit, Market Position, Net Profit, and Current Contracts (or Shares).

Most strategy position reserved wordscanonly beusedinastrategy andwill not verify inanindicator. However,
there are some specialized strategy position reserved words that can be used in indicators. Look at the code
for the Strategy Equity indicator for an example.

Strategy position reserved words can also report what the position information was N closed positions ago.
The maximum value for N closed positions ago is 10 (0 = current, and is assumed.)

MarketPosition
MarketPosition (N) returnswhether the strategy iscurrently flat, short, or long on the current bar or for
N closed positions ago. MarketPosition return values are:

-1 for a short position.

1 for along position.

O for flat (no position).

Usage Example:
if MarketPosition = 0 then
Buy next bar at Market;

In this example, along entry is only allowed if the market position is flat.

Usage Example:
if MarketPosition(l) = -1 then
Buy next bar at Market;

In thisexample, along entry is only allowed if the last closed market position was short.

Historical Reference of Strategy Position Reserved Words
Most of the strategy position reserved words cannot be referenced historically. To reference these fields his-
torically, it is necessary to assign them to a variable and then reference the variable.

Usage Example:
Vars: MP(0) ;
MP = MarketPosition;
if MP[2] = -1 AND MP[1] = O then
Buy next bar at Market;

In this example, we declare avariable to hold the Market Position state. We can then reference market-
position historically. A long entry is only alowed if a short position was closed on the previous bar.

Creating Trading Strategies Strategy Position Reserved Words 87

EntryPrice
EntryPrice returnsthe entry price for the current position. It can aso report what the entry price was N

closed positions ago.

Usage Example:
if MarketPosition = 1 then
Sell next bar at EntryPrice - .10 Stop;

In this example, asell stopis set for along position .10 below the entry price.

BarsSinceEntry
BarsSinceEntry returnsthe number of bars from the entry bar for the current position. It can also report
how many bars from the entry bar of N closed positions ago.

Usage Example:
if MarketPosition = 1 AND BarsSinceEntry > 5 then

Sell next bar at Market;

In this example, sell along position at market 5 bars after the entry bar.

Usage Example:
if MarketPosition = 1 AND BarsSinceEntry > 5 then

Sell next bar at Low[BarsSinceEntry] Stop;

In this example, we can use BarsSinceEntry to reference bar prices on the bar of entry. Here we set a
sell stop for along position at the low of the entry bar.

Additional Strategy Position Reserved Words
There are anumber of additional strategy position reserved words that allow you to get information from the
strategy engine, including:

AvgEntryPrice
BarsSinceExit
Current Shares
Current Contracts
EntryDate
EntryTime
ExitDate

ExitTime

Look in the Easyl anguage Dictionary and TS User Guide for acompletelisting of strategy position reserved
words and details on how they are used.

88

Strategy Performance Reserved Words EasyLanguage Essentials Programmers Guide

Strategy Performance Reserved Words

The Easyl anguage strategy engine also keepstrack of strategy performance information and makes thisin-
formation available through reserved words. Performance information includes Net Profit, Total Trades, and
Open Position Profit.

Strategy performancereservedwordscanonly beusedinastrategy, andwill not verify inanindicator. However,
there are some specialized strategy position reserved words that can be used in indicators. Look at the code
for the Strategy Equity indicator for an example.

NetProfit

NetProfit returnsthe cumulative net profit or lossfor al closed tradesin the chart; thisisthe closed trade
equity curve value for each bar. The value will either be positive, negative, or zero.

Usage Example:
Vars: TradeSize (0) ;
TradeSize = 1000;
TradeSize = TradeSize +(NetProfit / Close);
Buy next bar TradeSize Shares at Market;

In this example, the trade size is increased or decreased by referencing Net Profit.

Historical NetProfit
Toreference historical NetProfit values, or to reference the netprofit N closed trades ago, we will need to store
the datain avariable or array.

Usage Example:
Vars: NP(0) ;
NP = NetProfit;
if NP[1] > NP[2] then
Buy next bar at Market;

Inthisexample, we storeNetProfit inavariable NP, and then test to see if NP changes bar to bar. We can
then test to seeif the last trade was awinning or losing trade by comparing to the previous NP value. Here, a
long entry isalowed if the previous trade was profitable.

Creating Trading Strategies Strategy Performance Reserved Words 89

OpenPositonProfit

OpenPositionProfit returns net profit or loss for the current open position. If you add OpenPosi-
tionProfit to NetProfit, you get the same value as the detailed equity curve on a bar-by-bar basis.
The value will either be positive, negative, or zero.

Usage Example:
Input: ProfitExit (200) ;
if OpenPositionProfit >= ProfitExit then begin
Sell next bar at Market;
BuyToCover next bar at Market;
end;

Inthisexample, thestrategy exitsalongor short positionwhentheOpenPositionProf it meetsor exceeds
the input profit amount.

Note: Both long and short exits are generated here and only the one that is appropriate for the current open
position will be generated.

Additional Strategy Performance Reserved Words
Thereareanumber of additional Strategy Performance reserved wordsthat allow you to get information from
the strategy engine, including:

GrossProfit
GrossLoss
NumWinTrades
NumLosTrades
PercentProfit
Total Trades

Look in the EasyL anguage Dictionary and TS User Guide for a complete listing of Strategy Performance re-
served words and details on how they are used.

90

Built-in Stops EasyLanguage Essentials Programmers Guide

Built-in Stops

EasyL anguage includes built-in exit commandsthat may beincluded directly inyour strategies. These special
commands will be active even on the bar of entry; that is, they are evaluated on each tick (regardless of any
setting for Intrabar Order Generation on the Calculation tab of the Format Strategy dialog). These stops are
not written in EasylL anguage, but are part of the strategy engine.

The built-in stop commands are:

SetBreak Even - sets an exit stop at the entry price, after aminimum profit is achieved.

SetDollar Trailing - sets an exit stop afixed number of dollars away from the peak profit.
SetPercentTrailing - setsan exit stop afixed percent of the peak profit away from the peak profit, after
aminimum profit is achieved.

SetProfitTarget - setsan exit order at afixed dollar profit target.

SetSopl oss - sets a stop loss order at afixed dollar risk from entry.

Each of these exitshave one or more parametersthat set the stop amount. The stop amount can be set to operate
on aposition basisin dollars or share/contract basis relative to entry price.

By default these exits operate on a position basis and stop amounts are set in dollars.

Usage Example:
Vars: MoValue(0) ;
MoValue = Momentum(Close, 10);
if MoValue crosses over 0 then
Buy next bar at Market;
SetStopLoss (100) ;
SetProfitTarget (100) ;

In this example, the built-in stops will exit either the long position with a safety stop or profit target of $100
whichever gets hit first.

There are two code switches that determine how the stop amount for built-in stopsis specified: position basis
in dollars or per share or per contract basis from the entry price.

SetStopPosition - exit iscalculated for the entire position in dollars.
SetStopShare Or SetStopContract - exits are calculated per share or contract.

Usage Example:
Inputs: StopAmt (1), ProfitAmt (1) ;

SetStopShare;
SetStopLoss (StopAmt) ;
SetProfitTarget (ProfitAmt) ;

In this example, the built-in stops are set to accept inputs on a per share basis.

Creating Trading Strategies Symbol Attribute Reserved Words 91

Symbol Attribute Reserved Words

EasyL anguagereportsanumber of symbol attributesthat can bereferencedin strategiesand indicators. Symbol
attributeinformationincludes: BigPointValue, PriceScale, MinMove, and sessioninformation. This
allows usto determine the dollar value of a minimum price movement, when the markets open and close, and
calculate dollar based stop and profit exits for any symbol.

BigPointValue

BigPointValue returns the dollar market value for a single whole number move in price for a symbol.

Sample big point values:
USStock =1
E-Mini S& P 500 Future = 50
E-Mini NASDAQ 100 Future = 20
US Stock Option = 100
US Bond Future = 1000
EURUSD Forex =1

Usage Example:
Input: StopLoss(5);
Var: StopPx(0) ;
StopPx = StopLoss * BigPointValue;
SetStopContract;
SetStopLoss (StopPx) ;

In this example, we set a stop 10ss on a per contract basis and adjust the StopPx by theBigPointVvalue
so that it will work with any instrument.

92

Symbol Attribute Reserved Words EasyLanguage Essentials Programmers Guide

PriceScale
PriceScale returnsthefractional portion of afull point movefor aparticular symbol. The PriceScalevalue
is represented by a whole number.

For example, the PriceScale for astock is 100. Therefore, the minimum price increment for a stock is
0.01 (1/PriceScale = 1/100) .

Sample Price Scale Values:
US Stock = 100
E-Mini S&P 500 =100
E-Mini NASDAQ 100 = 100
US Stock Option = 100
USBonds = 32
EURUSD Forex = 10000

Usage Example:
Plotl (1/PriceScale) ;

In this example, we are plotting the price scale value as a decimal value for any symbol.

MinMove
MinMove or minimum move returns the smallest amount of price change, in PriceScale units, allowed for a
symbol. Thisvalue is expressed in whole numbers. For example, the minimum move for astock is 1.

Sample MinMove Values:
USStock =1
E-Mini S&P 500 =25
E-Mini NASDAQ 100 =25
US Stock Option=1
USBonds=1
EURUSD Forex =1

Usage Examplel:
Plotl (MinMove / PriceScale) ;

In this example, we are plotting the smallest price increment between trades.

Usage Example2:
Plotl((MinMove / PriceScale) * BigPointValue) ;

In this example, we are plotting the dollar value of the smallest price increment between trades.

Note: Y ou canfindthe BigPointValue, PriceScaleand MinMovevaluesfor asymbol plottedinaChart Analysis
window on the Format~Symbol~Properties tab.

Creating Trading Strategies Tying Entry and Exit 93

Tying Entry and Exit

When working with strategies that take multiple positions in the same direction, known as scaling or pyra-
miding, it is possible to tie a specific exit signal to a specific entry. Exit signals can reference entries by their
signal name.

Usage Example (strategy signal names):

Buy ("MylstBuy") Next Bar 200 Shares at Market;

Buy ("My2ndBuy") Next Bar 100 Shares at High Stop;

Sell ("MylstSell") Next Bar From Entry ("MylstBuy")
100 shares at High Limit;

Sell ("My2ndSell") Next Bar From Entry ("My2ndBuy")
50 shares at Low Stop;

if Time = 1500 then Sell next bar at Market;

In this example, the strategy may buy up to 300 shares. However, the Sell exits only close out 150 shares, 100
from thefirst entry and 50 from the second entry. The remaining position is closed out entirely at 1500 hours
(3 pm). When exiting, if atrade sizeis not specified, the entire position is closed out.

TradeStation Chart Analysis - MSFT 30 min [NASDAQ] Mi... |'S - ﬁ_’_ i i tad
MSFT - 30 min L=27.95 +0.32% 0=27.69 Hi=28.00 Lo=27.59 ...

1 |

200 Sell

-28.60

150 -28.40

My1stSell ;I;,
,;I'_ -28.20

1% My2ndSell ¢, ,ﬁg,r
300 U%TH{ }:lﬁ/

M'!r‘l ets n1|5u

MystBuy T o795
! 200 I'1a"|1|,|r1stEu1|,|r
! -27.80
| I'u"ly.«Em:lEu‘j.\T
i |3"" 27.60
e
7/06 12:30 14:00 7107 12:00 13:30

| ™

|4'\

Tying Exits and Entries

94

Advanced Order Automation in EasyLanguage EasyLanguage Essentials Programmers Guide

Advanced Order Automation in EasyLanguage

Advanced orders are features provided to stock traders by ECNs (Electronic Communication Networks) that
allow control of order routing, price and size visibility, and other settings. These advanced order features can
be set within a strategy using the automation reserved words.

These features have no affect on back-testing.

Advanced Orders are turned on and of f with "Set" reserved wrods. Once turned on, all orders generated from
any strategy component applied to thechart will continueto usethe same advanced order feature. It istherefore
agood ideato turn off the feature when not needed.

Some of the more commonly used advanced order features include Show Only and Peg. Multiple advanced
orders can be used together for the same order.

Note: No advanced order validation of strategy orderswill be done by the strategy engine. Any incorrect com-
bination will result in the trade server rejecting the order. A good rule of thumb is that advanced orders are
always limit orders.

SetRouteName

SetRouteName isan advanced order feature of the TradeStation that allow you to set the routing for astock
order only. Theroute nameisan input to the set function, and isatext string corresponding to an order routing
choice.

Intelligent routing is the default when not specified in Easyl anguage.

These are the EasyL anguage names for routes:
Intelligent
ARCA
BTRD
NSDQ
SuperDOT

Usage Example:
SetRouteName ("ARCA") ;
Buy 500 shares next bar at 5.50 limit;
SetRouteName (“*Intelligent”) ;

Inthisexamplethestock traderouteisset to ARCA. Theorder isthen placed andtherouteisresettolntelligent.

Creating Trading Strategies Advanced Order Automation in EasyLanguage 95

SetShowOnly

SetShowOnly isan advanced order feature of the ECN’sthat allows you to set a smaller number of shares
to be displayed to the market for a stock order instead of the actual order size. This allows you to hide the
actual number of shares you wish to buy or sell when you have alarge order to place. If SetShowOnly is set
to zero, the feature will be disabled.

Usage Example:
SetShowOnly (200) ;
Buy next bar 1000 shares at InsideBid Limit;
SetShowOnly (0) ;

In this example, the bid size to be displayed is 200 shares out of atotal of the 1000 share order. SetShowOnly
is disabled after the order is placed.

SetPeg

SetPeg isan advanced order feature of the ECN’ sthat allows you to place adynamic limit order that always
stays on the best bid or best ask up or down to a set limit amount. The SetPeg order can be placed to peg to
the best bid/ask or amidpoint betweenthebid and ask. If themarket moves, your order isautomatically canceled
and moved to the new best bid or ask.

These are the EasyL anguage constants used with SetPeg:

0 = PegDisable (Disable Peg Feature)
1 =PegBest (Best Bid for aBuy, Best Ask for a Sell Short)
2 = PegMid (Mid Price for both Buy and Sell Short)

Usage Example:
SetPeg (PegBest) ;
Buy next bar at InsideBid +.10 Limit;
SetPeg (PegDisable) ;

In this example, adynamic limit order is created up to .10 above the current inside bid and then the feature is
disabled.

Note: Look in the EasyLanguage Dictionary and TS User Guide for a complete listing of Strategy Advanced
Order reserved words and details on how they can be used.

96

TradeManager Reserved Words EasyLanguage Essentials Programmers Guide

TradeManager Reserved Words
EasyL anguage allows you to access brokerage account information within your strategies so you can more
accurately tie your account money management to your real-time strategy trading.

For example, you have the ability to see real-time buying power and adjust the share/contract size of an au-
tomated strategy in order to avoid exceeding buying power or margin limits.

Y ou can also check real-world positionsfor the purpose of keeping astrategy synchronized with thereal -world
or to verify atrade was made before placing the other side of a"pairs' trade.

TradeManager reserved words allow you to access fields from the TradeManager's Balances and Positions
tabs. There are specific reserved words for both your equity and futures accounts. These reserved words will
return zero when referencing historical bars.

Each of these TradeManager reserved words requires an Account ID input, which isastring representation
of the account number to reference.

GetAccountID

GetAccount ID retrievesthe account that has been selected in the Format Strategy dialog. The return string
value from this reserved word can be used as an input to the other TradeManager reserved words to identify
the account to access. An empty string will be returned if called from an indicator.

GetBDAccountNetWorth

GetBDAccountNetWorth retrieves the Beginning Day Account Net Worth amount from the TradeMan-
ager's Balancestab for the given equity/stock account. Zero will be returned for afutures account or aninvalid
account.

GetRTAccountNetWorth
GetRTAccountNetWorth retrieves the real-time Account Net Worth amount from the TradeManager's
Balances tab for the given equity account. Zero will be returned for a futures account or an invalid account.

Usage Example (TradeManager account balances):
Vars: NetProf (0) ;
NetProf = GetRTAccountNetWorth (GetAccountID) -
GetBDAccountNetWorth (GetAccountID) ;

In this example, we can calcul ate the real-time net profit for an account.

Creating Trading Strategies TradeManager Reserved Words 97

GetRTDayTradingBuyingPower

GetRTDayTradingBuyingPower retrieves the real-time day trading buying power amount from the
TradeManager's Balances tab for the given equity/stock account. Zero will be returned for a futures account
or an invalid account.

Usage Example:

Input: TradeSize (500) ;

Vars: AvailCap(0), TradeCost(0);

TradeCost = (TradeSize * Close) *.25;

// 4 to 1 margin on day trading positions

AvailCap = GetRTDayTradingBuyingPower (GetAccountID) ;

if AvailCap > TradeCost then

Buy next bar TradeSize shares at market;

In this example, the real-time cost of aday trading position is calculated, and then the strategy checks to see
if there is enough money in the account to make the trade.
GetRT PurchasingPower
GetRTPurchasingPower retrievesthereal -timebuying power amount fromthe TradeM anager'sBalances
tab for the given futures account. Zero will be returned for an equities/stock account or an invalid account.

Usage Example:
Input: TradeSize(5), MarginReq(5000) ;
Vars: AvailCap(0), TradeCost (0) ;
TradeCost = (TradeSize * MarginReq) ;
AvailCap = GetRTPurchasingPower (GetAccountID) ;
if AvailCap > TradeCost then
Buy next bar TradeSize contracts at market;

In this example, the margin for the futuresisan input. Thetotal margin requirement is cal culated and then the
strategy checksto seeif there is enough money in the account to make the trade.

Additional TradeM anager Account Reserved Words
TradeManager Account reserved words that allow you to get information from the strategy engine include:

GetAccountStatus
GetBDCashBalance
GetBDAccountEquity
GetRTCashBalance
GetRTAccountEquity

Look in the EasyLanguage Dictionary and TS User Guide for a complete listing of TradeManager Account
reserved words and details on how they are used.

98

TradeManager Position Reserved Words EasyLanguage Essentials Programmers Guide

TradeManager Position Reserved Words
TradeManager reserved words also allow you to access specific positionsthat are open in aspecified account.
Thisinformation is also available in the TradeM anager's Open Positions tab.

Each of these reserved words requirestwo inputs: Symbo1l - astring that identifies the symbol to check; and
AccountNumber - astring representation of the accountID to check.

GetPositionQuantity

GetPositionQuantity retrievesthe net quantity and side (long / short) of the equity or futures position
for the given symbol in the given account. A negative value indicates the position is net short. A positive
valueindicatesthepositionisnetlong. Zeroindicatesthe positionisnet flat or the symbol or account areinvalid.

Usage Example:
Input: TotalShares(5000), TradeSize (500) ;
Vars: CurShares (0) ;
CurShares = GetPositionQuantity (GetSymbolName,GetAccountID) ;
if CurShares < TotalShares AND CurShares > 0 then
Buy next bar TradeSize shares at Market;

In this example the strategy retrieves the total number of shares for a given symbol in a given account, and
buys on each bar up to the specified total position of 5000 sharesin 500 share increments.

GetPositionAveragePrice

GetPositionAveragePrice retrieves the average price of the equity or futures position for the given
symbol in the given account. If no position exists, or if the symbol or account isinvalid, the return value will
be zero.

Usage Example:
Input: StopLvl(5);
Vars: AvgPrc(0) ;
AvgPrc = GetPositionAveragePrice (GetSymbolName, GetAccountID) ;
Sell next bar at AvgPrc - StopLvl Stop;

In this example, the strategy retrieves the average entry price for a position and sets a sell stop 5 below that
entry price.

Creating Trading Strategies TradeManager Position Reserved Words 99

GetPositionOpenPL
GetPositionOpenPL retrieves afuture or equity position's Open P/L for the given symbal in the given
account. If no position exists, or if the symbol or account isinvalid, the return value will be zero.

Usage Example:
Input: ProfTrgt (500), StopLoss(500);
Vars: OpenPosPL(0) ;
OpenPosPL = GetPositionOpenPL (GetSymbolName, GetAccountID) ;
if OpenPosPL > ProfTrgt then
Sell next bar at market;
if OpenPosPL < StopLoss then
Sell next bar at market;

In this example the strategy retrieves the open position profit for a given symbol in a given account and sells
for aprofit or loss at given levels.

Additional TradeM anager Position Reserved Words
TradeManager Position reserved wordsthat will allow you to get information from the strategy engineinclude:

GetNumPositions
GetPositionSymbol

Look in the EasylL anguage Dictionary and TS User Guide for a complete listing of TradeManager Position
reserved words and details on how they are used

100

Strategy Properties EasyLanguage Essentials Programmers Guide

Strategy Properties

Once applied to a chart, a strategy has a number of settings that affect the historical calculation procedures,
order sizing, scaling, and performance measures. These properties are set either when the strategy is written
in the PowerEditor or once the strategy is applied to the chart from the Format~Strategy~Properties dial og.

Strategy Properties for All Strategies on this Chart

Gereral | & semation
Costs/Captalization Paosgtion limis
Commisson: § |0 gaﬂf;md! lAlowupta| 50 entry orders in the same
DMTEE? direction 3 the cumertly hald postion
*) par Trade
Sippage: 5 |0 wher| the omder = genarmted by a
() per Share/Contract © afferent enilry order
y o regardiess of the entry that
initial Capal:s | 100000 (=) od tha oed
Intermst Rate: |2 %
Meta: Indial Capal and Inferes Rate s usad only in Mapgmum shares. 50000
the Strategy Pedformance Rapodt. e e ™
Backtesting resshution Trade size if not specified by sirabegy)
[#] Use Look-Inside-Bar Eack testing
(%) Feged Shares,/Contracts 1
Pt
) Theke
) ntraday |1 i e © Dolars per Trade
Masimum rumber of bars study |5
will refersnce
Lok [cowce |[Heo

Strategy Properties

Costs and Capitalization
In order to more accurately model astrategy’ s historical performance, commission and slippage can be added
as cost offsets. Commission and slippage can be set on a per trade or per share/contract basis.

Slippage isaway of factoring in aworst case scenario for historical market orders.
For certain performance measure like annual rate of return, you need to specify theinitia capital required to

trade the tested instrument. Interest rate is also used in certain performance measures and should be set to the
current annua risk free rate of return.

Creating Trading Strategies Strategy Properties 101

L ook-Inside-Bar Back-Testing

To enhancethehistorical performance simulation when cal culating astrategy using intra-bar order generation,
TradeStation allows you to add a second finer data stream for better calculation resolution of strategy rules
and order fill prices. Thisfiner data stream is added to the chart from the strategy properties dialog.

The Format~Strategy~Properties dialog includes a section label ed Backtesting Resolution that allows you to
enable L ook-1nside-Bar Back-Testing. Thissetting allowsyou to specify the dataresol ution to use when back-
testing your Strategies. Depending on the bar interval in the chart, you can add minute or tick datato the chart.
Once enabled, the strategy then calculates and tests order prices at the four price points of the second finer
data stream.

Note: When operating in a real-time mode, strategies ignore this second finer data stream. The strategy will
use real-time price data for strategy rule and order fill evaluation. Therefore, you should turn this feature off
to recapture memory when you are finished back-testing your strategy.

MaxBar sBack in Strategies

Unlikeindicators, trading strategies cannot automatically detect the number of bars necessary to calculate the
strategy for the first time. By default, strategies have a fixed user defined MaxBarsBack setting of 50. This
should bereset to the maximum historical reference used within your strategy rulesand cal culations, including
the highest optimized value you may test.

Position Sizing

Determining the number of shares or contracts a strategy will trade can be set in two ways: 1) it can be set
manually inthestrategy propertiesdial og, or 2) it can beset programmatically insidethe strategy EasyL anguage
code.

When setting the trade size manually in the strategy properties dialog there are two options. Y ou can specify
afixed number of sharesor contracts per trade, or you can specify tradesi ze based on dollars per trade, rounded
to an even lot size. The dollars-per-trade option should only be used when trading stocks.

If you are setting trade size programmatically inside the strategy Easyl anguage code, EasyL anguage always
controls and will override the trade size settings in the strategy properties dialog.

Position Limits

Normally, when a strategy is applied to a chart, TradeStation allows only one trade in one direction at atime.
Thisisdesigned to prevent strategiesfrom inadvertently generating many multiple ordersin the samedirection
while astrategy ruleistrue for many bars or ticksin arow.

102

Strategy Properties EasyLanguage Essentials Programmers Guide

Scaling In

However, there are times when a strategy will include scaling into a position. To implement scaling-in in a
strategy, turn on Position Limits and specify the number of tradesto allow for the maximum overall position
in the same direction.

The maximum number of shares or contractsto trade for the entire position can also be specified. If astrategy
order would result in exceeding this maximum number, the order quantity is reduced to maintain the desired
maximum.

Enable this feature from the Position Limits setting in the Strategy Properties dialog.

When Pyramiding into a position, specify which signalsin your strategy may generate additional orders:
1. Strategy orders must be from different signals (one trade per signal).
2. Strategy orders can be from the same or different signals (multiple possible trades per signal).

Scaling Out

Thereis no setting required or restrictions for scaling out of a position.

Usage Examples:
Buy (“Entryl”) next bar at 100 Shares at 25 Stop;
Buy (“Entry2”) next bar at 200 Shares at 26 Stop;
Sell (“Exitl”) next bar 100 Shares at 27 Limit;
Sell (“Exit2”) next bar 100 Shares at 28 Limit;
)

Sell (“Exit3”) next bar 100 Shares at 28 Limit;

In this example, the strategy scalesin with buy orders at two price levels and then sells athird of the position
at each of three different price levels.

Note: A sell order isonly executed once per position, which avoids multiple trades at the same order price.

Creating Trading Strategies Strategy Automation 103

Strategy Automation

Automationisthereal-timemonitoring of strategy rulesfor the purpose of real-world buy/sell order generation.
A strategy is considered automated when the strategy makes all of the decisions required to generate entry
and exit orders. Asnew datacomesinto the chart, rulesare eval uated and orders can be automati cally generated.

Automation is aways turned off by default, and must be enabled in the Format Strategy dialog.

Format Analysis Techniques & Strategies]z|
Bnabysis Techrigues | Sirateges
Sel | Buylo Eermat
Harme Input Wiskuss Slahst | Buy Sl Shett | Cotar —
Bolrwysr Bands LE | Cloam Closs 20 2 . —
A Bolrgss Bands SE Cloge Clogs 20 2 On On ~
A Paolit Tangat Iaken § On On - On =
A Shop Loss [F oA On O On -
Move Down
PRl DMBEON
Fﬁeﬂem sirsbegy orders for dsplay in TradeMansger's ‘E!Eﬁ&dﬂ'&lﬂb
[#] ftomate execution using 21025062 secourd with corfrmaiion (Om W
]

Format Strategy dialog

When enabling strategy automation from thebottom of the Format Strategy dialog, new orderswill bedisplayed
in real-time on the Strategy Orders tab in the TradeManager window. We refer to these orders as strategy-
generated orders. Automated strategy orders can then be sent automatically into the market to execute with
or without a user confirmation.

Trade Manager
The TradeManager is the control center for al strategy automation operations. There are two strategy auto-
mation tabs that should be monitored when automation is enabled.

The TradeM anager Strategy Positions tab shows which symbols and charts are automated, and
whether real-world position and strategy position match.

The TradeM anager Strategy Order stab shows all orders generated by al strategies. It shows what
symbols and charts generated the orders, the order prices, and any restrictions that may affect the orders.

104 Strategy Automation Synchronization EasyLanguage Essentials Programmers Guide

Strategy Automation Synchronization

In strategy automation, strategy orders are considered filled once their price istouched regardless of whether
the orders are actualy filled in the real market. This could result in a position difference between the strategy
position and actua real-world position. When this "out-of-sync" state occurs the strategy automation is no
longer ableto send ordersto the market. If the strategy remains " out-of-sync" for more than 3 minutesadialog
will prompt you to take action.

Asan alternative, TradeStation allowsyou to specify how strategy fillsfor limit orders areto be handled. The
Automation tab of the Strategy Properties dialog offers a couple of ways to handle automatic execution of
limit orders:

1. You can instruct TradeStation to replace an unfilled strategy generated entry or exit limit order with a
market order after a specified number of seconds.
2. You can have TradeStation confirm an actual market fill before the strategy reports the fill.

Strategy Properties for All Strategies on this Chart

General | Automation

Strategy fill logic
(®) Strateqy will fill non-historical orders based on price activity
[Replace strategy ertry limit orders with market orders secaonds after the strategy has filed the order
["] Replace strategy exit limit orders with market orders secaonds after the strategy has filled the order

] Mllow reversing exit and entry orders to be placed simultaneously when automating futures and allow
multiple strategies on multiple charts using the same futures symbal.

Mote that if this option is selected the strategy will not pedform usual position checks before placing an
order and the Posttion Match value WILL NOT be used to detemmine whether an order is placed

() Strateqy will fill non-historical orders only when the TradeManager reports them as filled

[J 5end strateqy generated stop orders directly to the TradeStation Order Execution Network
Maote: When selected, orders generated more frequently than 1 minute apart will be

marked as "Price Restricted" and will not be sent until the stop price has been met.

[J5et as Default

oK][Cancel H Help

Automation tab of the Strategy Properties dialog

Note: Synchronization is generally only an issue with limit orders, since the market may trade at the limit
price but the order may not be filled. Stop Market and Market orders will generally fill when hit and do not
cause synchronization issues.

Creating Trading Strategies U-Turns for Futures 105

U-Turns for Futures

A stock can only be automated in one chart on one account. The same futures symbol can be automated in
one or more charts by turning on the “ Allow reversing exit and entry orders...” on the Automation tab of the
Strategy Properties dialog. By checking this third box, you choose to allow automated strategy ordersfor the
same symbol in multiple charts.

Strategy Properties for All Strategies on this Chart

General | Automation

Strateqgy fill logic
() Strategy will fill non-historical erders based on price activity
[[] Replace strategy entry limit orders with market orders seconds after the strategy has filed the order

MM orders with market onders seconds ¢ has filled the order

[Replace

Allow reversing exit and entry orders to be placed simulttaneously when automating futures and allow
multiple strategies on multiple charts using the same futures symbaol.

Maote that if this option is selected the strategy will not perform usual position checks before placing an
order and the Position Match value WILL NOT be used to determine whether an order is placed

() Strategy . jstorical orders only when the TradeManager reports them as fille

[5end strateqy generated stop orders directly to the TradeStation Order Execution Network

Mote: When selected, orders generated more frequenthy than 1 minute apart will be
marked as "Price Restricted” and will not be sent until the stop price has been met.

[] et as Default

QK H Cancel H Help

Automation tab of the Strategy Properties dialog

Send Stop Orders to TradeStation Servers

Traditionally, and by default, strategy generated stop orders are held on your computer until the stop priceis
hit, then amarket order is sent into the market to befilled. By clicking the check box “ Send Strategy Generated
Stop Orders...” onthe Automation tab, stop ordersare sent directly to the TradeStation order serversto monitor
the stop price and send orders into the market.

Note: This has the benefit of keeping a strategy stop order active even if you have a power loss or internet
interruption. However, if you lose connectivity with thisfeature enabled, the strategy will be unable to cancel

or modify the order.

106 Send Stop Orders to TradeStation Servers EasyLanguage Essentials Programmers Guide

Creating Functions

A function is an EasyL anguage document that performs adefined set of instructions and returns one or more
values. Most indicators and strategies utilize functionsto perform mathematical calculations. Thereturnvalue
type of afunction is set at creation time and can be numeric, true/false, or string. The return type can also be
modified in the property setting of the function.

Functions help minimize complexity in indicators, strategies, and other functions. They improve readability
and reduce errors. Most functions have parameters which add flexibility to the calculation, allowing asingle
function to be used in avariety of situations.

A function is referenced by its file name. The value a function returns is assigned to the function file name
within the code. This assignment to the function file nameisrequired in al functions. Even if afunction does
not return auseful value, asin asorting type function, or drawing tool function, the function must return some
dummy value. Function names may not contain spaces or non-al pha characters with the exception of an un-
derscore.

A function can be a single statement, or can be as complex as the calculations require. Functions often call
other functionsto derive values and streamline code.

Usage Example (function named “Range”):
Range = High - Low;

In this example, the function name Range is assigned the calculation for the range of a bar.

Usage Example (function named “ Summation”):
inputs: Price(numericseries), Length(numericsimple) ;
variables: Sum(0) ;
Sum = 0 ;
for Valuel = 0 to Length - 1 begin
Sum = Sum + Price[Valuell;
end ;
Summation = Sum ;

In this example, the function name Summat ion is assigned the calculated Sum of the Price of Length bars.
Input values, Price and Length, are provided by the calling analysis technique.

Usage Example:
inputs: Price(Close), Length(10);
variables: Avg(0) ;
Avg = Summation (Price, Length) / Length;
Plotl (Avg, “Avg”);
In this example, the Summation function is called in an indicator to calculate amoving average the inputs for

priceand length are required by the function. By default, all function namesin EasylL anguage code are syntax-
colored purple.

Creating Functions Function Input Parameters 107

Function Input Parameters

Many functions are written with input parameters which adds flexibility to the function calculations. Input
parameter val ues are passed into the function from acalling analysistechnique based on theinput declaration.
The name and type of input value needed is determined by the user, and the declared input parameter names
should be descriptive of their function and purpose.

There arethreetypesof function input parameters: Numeric, TrueFalse, and String(text):
Numeric - When a parameter of afunction is defined as numeric, the function requires a numeric value
or expression (e.g., 3, .456, 100.234, Close, Average(Close, 20), etc.).
TrueFalse - When aparameter of afunction is defined as true/fal se, the function requires atrue/false
value or expression (e.g., True, False, Close > Close[1], etc.).
Sring - When a parameter of afunction is defined as String, the function requires a String value or
expression (e.g., “B”, “Sell”, “New High”).

Usage Example:
Inputs: Price(numeric), BuyCond(TrueFalse), Label (string) ;

Parameter Subtypes

Parameter subtypes alow the management of memory overhead for function inputs. The two main parameter
subtypes are: Simple and Series. The parameter subtype determines whether the input parameter is constant
bar to bar (Simple), or the input parameter refersto values that may be different on every bar (Series).

Simple Parameters

Simple parameters are constant values that do not change from bar to bar. Simple parameters require
less memory and may improve processor speed. For example, the length input for the Average function,
(20), would be a simple parameter, since this number does not change from bar to bar. The function
code cannot refer to asimple input parameter value historically.

Series Parameters

Series parameters are values that are generally going to be different on every bar. For example, the price
input for the Average function, (Close), would be a series parameter. The function code can refer to a
series parameter value historicaly.

Usage Example:

Inputs: Price(numericseries), Length(numericsimple) ;

Inputs: BuyCond(truefalseseries), TimeCond (truefalsesimple) ;
Inputs: Message(stringseries), SymbolName (stringsimple) ;

These are all examples of function input subtype declarations.

Note: If aspecific subtypeisnot selected, EasyL anguage will automatically set the appropriate subtype based
on the input code references.

108

Function Input/Output Parameters EasyLanguage Essentials Programmers Guide

Function Input/Output Parameters

Input/output parameters, also known as’ by reference’ parameters, allow afunction to modify and return mul-
tiple additional values to the calling analysis technique. This allows a function to make many related cal cu-
lations and then return al the values. It aso allows a function to modify an array and then return the entire
modified array. These multiple output parameter values are in addition to the normal function return value.

Aninput/output parameter requiresaspecialized input declaration statement that setstheinput parameter type.
In Tradestation, these types of parameter are prefixed with an ‘0’ in the name to idenify them as output pa
rameters and to distinguish them from standard inputs. The‘ 0’ should be used in the calling analysi stechnique
aswell.

Usage Example (function named “MyBands’):
Inputs: oUpperBand (NumericRef), oLowerBand (NumericRef) ;
oUpperBand = Highest (High, 10) [1];
oLowerBand = Lowest (Low, 10) [1];
MyBands = 1;

In this example, the function calculates and returns two values using input/output parameters. The function
itself does not return a useful value, but the assignment is still required and a dummy value of 1 isreturned.

Calling a M ulti-Output Function

Calling amulti-output function from within an analysistechnique requiresthat you declare avariable for each
input/output parameter required by the function. These variables are passed into the function as inputs, the
function calculates and returns the values by modifying the inputs. The modified variables now hold the cal-
culated values.

Usage Example:
Vars: oUpperBand(0), oLowerBand(O) ;
Valuel = MyBands (oUpperBand, oLowerBand) ;
Plotl (oUpperBand) ;
Plot2 (oLowerBand) ;

Inthisexample, theindicator callsthe*MyBands' function which passes both band values back through input/
output parameters. Notice that the functionisassigned to adummy variable‘Valuel’ in order to call the func-
tion.

Numeric Reference Types
The input/output parameter types are numeric, true/false, and string.

Usage Example:
Inputs: oNum(NumericRef), oCond(TrueFalseRef), oText (StringRef) ;

Creating Functions Function Array Parameter Declaration 109

Function Array Parameter Declaration

An array can also be used as a function parameter in an Input declaration statement. The array can be of
any type: numeric, true/false, or string. Y ou must create an array size and dimension holder. Arrays can also
be declared as input/output parameters so that the entire array can be passed back.

Usage Example:
Input: MyNumericArrayl [X] (NumericArray);//1 Dimensional Array
Input: MyNumericArrayl [X,Y] (NumericArray);//2 Dimensional Array

Input: MyNumericArrayl[X,Y,Z] (NumericArray);//3 Dimensional Array

[
[
[
Input: MyNumericArrayl [X] (NumericArrayRef) ;//Input/Output Array

The size of the array is determined when the functionis called. The size holders X,Y, and Z are automatically
declared asintegers, and can bereferencedin your function code. Y ou can givethese holdersany custom name.

Usage Example (function named "MaxVaArray"):
Input: MyNumericArray [M] (NumericArray) ;
Variable: Result (0);
Result = MyNumericArray[0]; //Reset variable each time.
For Valuel = 1 To M begin
if MyNumericArray[Valuel] > Result Then
Result = MyNumericArray[Valuell;
end;
MaxValArray = Result;

In this example, the function will return the maximum value stored in an array passed into the function by the
calling analysis technique.

Usage Example:
Vars: Result (0) ;
Array: MyNumericArray ([l (0);

Array SetMaxIndex (MyNumericArray, 10); //Set dynamic array size
For Valuel = 0 to 9 begin

MyNumericArray [Valuel] = Close;
end;

Result = MaxValArray (MyNumericArray) ;
Plotl (Result) ;

In this example, the MaxVa Array function is called in an indicator to find the largest value in an Array. The
Array isdeclared asadynamic array, and the sizeisautomatically passed into thefunction each timeitiscalled.

110

Function Array Input/Output Declaration EasyLanguage Essentials Programmers Guide

Function Array Input/Output Declaration

When an Array isdeclared asan input/output parameter in afunction, all of the Array elementscan bemodified
and returned to the calling analysis technique. For example, the built-in SortArray function accepts a one-
dimensional array by reference, sortsthearray, then passesback theentirearray tothe calling analysi stechnique
with the new sort order.

Usage Example:

Inputs: oPxArray [X] (NumericArrayRef),
oCondArray [Y] (TrueFalseArrayRef) ,
oNoteArray[Z] (StringArrayRef) ;

In this example, the function is declaring three input/output array parameters. The function can then modify
these arrays and pass back the entire array.

Function Property Dialog in the PowerEditor

Once you create a function, you can change the Return Type and Function Storage settings in the Function
Properties dialog. From within the PowerEditor, right click on your function code and select Properties. If
you create and type a Long Description and Usage Example, the text will appear in the entry for your function
in the EasyLanguage Dictionary.

Function Properties - test @l
General

Mame:

Short Description:

Long Description:

Usage Ewample:

Retum Type:

double {(numeric) W

Function Storage:
@) Autodetect () Simple) Series

0K I[Cancel l[Help l

Creating Functions Function Storage and Memory Optimization 111

Function Storage and Memory Optimization

Functions in EasyL anguage can be created to return numeric, text string, or true/false values. To optimize
memory, numeric functions can be set to only return an Integer, Float or Double Float value. Return types are
set when creating the function or from the function Property settings in the PowerEditor.

Integers usetheleast amount of memory, Double Floats use the most, but give you the highest precision when
comparing values. Floats are only retained for backward compatibility with older TradeStation versions and
are not recommended for the current version.

Easyl anguage also allows for optimizing the memory storage of the function itself, by determining how the
function can bereferenced historically. Thetwo settingsare: SeriesFunction or Simple Function. Thefunction
storage can also be set in the Properties dialog of the function.

Simple Functions are functions that cannot reference previous values of itself. Simple functions require less
memory and are not calculated bar by bar, but only when called. However, simple functions can internally
reference series functions and historical values like bar price data.

Series Functions are functions that can reference previous values of themselves, or previous values of any
variables or arrays within the function. Series functions are calculated on every bar (whether they are called
or not), and all previous values of variables are stored in memory.

For example, the built-in function BarNumber counts the number of bars after MaxBarsBack is satisfied. In
the example below, however, itisonly called conditionally. In order for BarNumber to return the correct value
on every bar it must be called on every bar, so that it can count the bars.

Usage Example:
// Call BarNumber Function
if Close > Close[l] then Valuel = BarNumber;

// Inside the function the calculation is done on every bar.

Usage Example:
BarNumber = BarNumber[1l] + 1;

In these two examples, the function BarNumber returns the correct value because, as a series function, it is
automatically called on every bar regardless of whether or not it is actually called in the indicator code on
every bar.

Memory Optimization

When you create afunction, EasyL anguage automatically setsthe function storage based on the historical ref-
erences within the code. At Verify time, if possible, it will set the function storage to Simple to save memory.
If this causes problems in the calculations you can always override and set the function storage to Seriesin
the Properties Dialog.

112 Text Objects EasyLanguage Essentials Programmers Guide

Drawing Objects

Text Objects

Text objects are drawing objects that can be hand drawn on the chart or can be placed on the chart program-
matically through Easyl anguage. Text objects are anchored to bars at a specific price on the Y-axis. The bar
location, price, and text of a hand drawn text object also can be seen by EasylL anguage.

EasyL anguage includes commands to create, move, read, and format text objects in a chart window. These
commands may be used by any analysis techniques or strategies including functions.

Text Object Properties:
» Each text object is assigned a unique ID reference number, starting with the number 1.
» Text objects will appear in the same subgraph as the data on which the study is based.
» Text objects are not part of the symbol scaling in a Chart Analysis window.
» Color of text objects may be set in EasyLanguage.
» Location of text objects may be set in EasyLanguage.
» Content of text objects may be set in EasyLanguage.

Note: The font and font size for text objects cannot be set in EasyL anguage but are are set in the text object
propertiesin a chart.

Creating a Text Object

Generally, acommand to create a new text object is placed inside aconditional statement so that a new object
is created only under the appropriate conditions. Be aware that if you create a text object unconditionally, a
new object would be created on every bar.

New text objects are created with the reserved word; Text New. Y ou need to specify the bar date, bar time,
price, and the text message to display.

Usage Example:
if High > Highest (High,10) [1] then
Valuel = Text New(Date, Time, High, "10-Bar High");

Inthisexample, atext object is created when the current bar isanew 10-bar high. The object number is stored
inValuel.

It isrequired to assign the Text_New reserved word to a variable so that the text object return ID number is
captured. By assigning the text object number to avariable, we can reference that text object ID in other text
object related formatting and manipulating reserved words.

Drawing Objects Moving a Text Object 113

Moving a Text Object

Once atext object is in the chart, it can be moved to any bar. By referecing the text object ID number we
captured when creating the text object, wecan movethetext object usingthe Text SetLocation reserved
word.

Usage Example:
if High > Highest (High,10) [1] AND Valuel > 0 then

Text SetLocation(Valuel, Date, Time, High) ;

In this example, a previously created text object numbered Valuel is moved to the current bar if the current
bar isanew 10-bar high.

Note: Before using any text object related reserved word a check is doneto seeif Valuel is greater than zero
in order to know if the text object exists.

Removing a Text Object
Text objects can be removed from achart by using the Text Delete reserved word.

Usage Example:
if Low < Lowest (Low,10) [1] AND Valuel > 0 then

Text Delete (Valuel) ;

In this example, a previously created text object isremoved from the chart when anew low is hit.

Formatting Style of Text Objects

Once atext object is created, we can align the text object relative to the bar and price on both the horizontal
and vertical axes. By using the text object reference number we captured when creating the text object, we
can format the alignment of the text object with the Text _SetStyle reserved word.

Text SetStyle(Horizontal value, Vertical value)

Horizontal Value Vertical Value
Value Placement Value Placement
o Left o Top
1 Right 1 Bottom
2 Centered 2 Centered

Usage Example:
if Valuel > 0 then

Text SetStyle(Valuel, 2, 1);

In this example, the text object is centered on the bar and aligns the bottom of the text to the price.

114

Formatting the Color of a Text Object EasyLanguage Essentials Programmers Guide

Formatting the Color of a Text Object

Once atext object is created, we can set the text object color using either the basic 16 colors or the 16 million
color palette. By using the text object reference ID number we captured when creating the text object, we can
format the color of the text object with the Text SetColor reserved word.

Usage Example:
if Valuel > 0 then
Text SetColor (Valuel, Blue);

This changes the color of the text object to Blue.

Usage Example:
Value2 = RGB(5, 50, 150);
if Valuel > 0 then
Text SetColor (Valuel, Value2);

In this example, the color of the text object is changed to the RGB color specified.

Changing the Text Object Message

Once atext object is created we can change the text object message. By using the text object reference number
we captured when creating thetext object, we can changethemessage of thetext object withthe Text_SetString'
reserved word.

Usage Example:
if Low < Lowest (Low, 10) [1] AND Valuel > 0 then

Text SetString(Valuel, "10-Bar Low");

In this exampl e, the text message is changed to 10-Bar Low.

Getting Text Object Values

Thereareanumber of additional text object reserved wordsthat allow you to get information from an existing
text object in the chart. These reserved words alow you to find and get text object values and then use that
information in your analysis techniques.

Usage Example:
Vars: TextMessage(“");
TextMessage = Text GetString(Valuel) ;
Print (TextMessage) ;
In this example, the text object message is retrieved and output to the print log on every bar.

Hereisalist of additional text object GET reserved words:
Text GetDate, Text GetTime, Text GetValue, Text GetColor

Look in the EasyL anguage Dictionary and TS User Guide for acompletelisting of Text Object reserved words
and details on how they are used.

Drawing Objects Text Object Errors 115

Text Object Errors

All of the reserved words that work with text objects can return a numeric error code representing the result
of afailed operation. If the text reserved word was able to carry out itstask successfully, it will return avalue
of O or inthe case of Text New the |D number.

Text Object Error codes:

-2 - Theidentification number used was invalid (i.e., thereis no object on the chart with
this ID number).

-3 - The data number (Data2, Data3, etc.) passed to the function was invalid. Thereis no symbol (or
data stream) on the chart with this data number.

-4 - Thevalue passed to a SET function wasinvalid (for example, an invalid color or line thickness was
used).

-6 - The function was unable to load the default values for the toal.

-7 - Unableto add the object. Possibly due to an out of memory condition. Your system resources have
been taxed and it cannot process the request.

-8 - Invalid pointer. Your system resources have been taxed and it cannot process the request.
-9 - Previousfailure error.
-11 - Too many text objectsin chart.

Once atext object function error occurs, the trading strategy, analysis technique or function will stop drawing
all text objects from that bar forward. The trading strategy, analysis technique or function will continue to
calculate as normal, but all text object reserved words will return a value of -9 (previous failure error) and
will not perform the intended action.

By assigning the text objects reserved words to a variable, you can capture the return value error code. As-
signment to avariable is optional here and only needed to capture the return value.

Usage Example:
Valuel0 = Text SetColor (Valuel, Value2);
Print (Date, Time, ValuelO) ;

In this example, the print statement outputs the text object error value to the Print Log.

116

Trendlines EasyLanguage Essentials Programmers Guide

Trendlines

Trendlines are drawing objects that can be hand drawn on the chart, or can be placed on the chart program-
matically through EasyL anguage. Trendlines are anchored to two bars at specific prices on the Y axis. The
bar dates, times, and prices of a hand drawn trendline can be seen by Easyl anguage.

EasyL anguageincludescommandsto create, move, get values, and format Trendlinesinachart window. These
commands may be used by any analysis techniques or strategies including functions.

Trendline Properties:
» Eachtrendlineisassigned a unique reference number, starting with the number 1.
» A trendline will appear in the same subgraph as the data on which the study is based.
» Trendlines are not part of the symbol scaling in a Chart Analysis window.
» Color of trendlines may be set in Easyl anguage.
» Beginning and ending points of trendlines may be set in EasyL anguage.
» Trendlines can be extended right or left in Easyl anguage.

Trendlines and text objectsare very similar in functionality and programming, once you know one, you pretty
much know the other.

Creating a Trendline
Generally, thecommandto createanew trendlineisplacedinsideaconditional statement sothat anew trendline
is created only under the stated conditions. But you could create trendlines on every bar if you needed to.

New trendlines are created with the reserved word TL._New. You need to specify the beginning bar date, be-
ginning bar time, beginning price, ending bar date, ending bar time, and ending price.

Usage Example:
if High > Highest (High, 10) [1] then
Valuel = TL New(Date[10], Time[10], High, Date, Time, High);

In this example, a horizontal trendline is created at every new 10-bar high on the chart.
It isrequired to capture the trendline ID number when the TL._New reserved word is used. By assigning the

trendline ID number to a variable, we can reference that trendline in other trendline related formatting and
manipulating reserved words.

Drawing Objects Moving a Trendline 117

Moving a Trendline

Once atrendline is on the chart, the beginning and ending points can be moved to any bar and the trendline
isautomatically moved and redrawn. By using the trendline reference |D number captured when creating the
trendline, the trendline can be moved with the TL._SetBegin and TL_SetEnd reserved words.

Usage Example:
if High > Highest (High,10) [1] AND Valuel > 0 then begin

TL SetBegin (Valuel, Date[10], Time[10], High);
TL SetEnd(Valuel, Date, Time, High);
end;

In this example, a previously created trendline numbered Valuel is redrawn to the current bar if the current
bar isanew 10-bar high.

Note: Before using any trendline related reserved word always check to seeif the trendline exists by checking
to seeif Vauel is greater than zero.

Removing a Trendline
Onceatrendlineisonthechart it can be removed. Using the trendline ID number we captured when creating
the trendline, we can remove the trendline with the TL._Delete reserved word.

Usage Example:
if Low < Lowest (Low,10) [1] AND Valuel > 0 then

TL Delete(Valuel) ;

In this example, a previously created trendline numbered Valuel is removed from the chart.

Formatting the Thickness of a Trendline

Once atrendline is created we can size the trendline thickness by using the trendline reference number we
captured when creating thetrendline. We can format thelinethickness of thetrendlinewiththe TL, SetSize
reserved word. Available trendline size settings range from thinnest (0) to thickest (6).

Usage Example:

if Valuel > 0 then
TL SetSize(Valuel,4);

In this example, the trendline is changed to athicker line style.

Note: There is aso atrendline reserved word TL._SetStyle, that allows you to change the trendline line
style from solid to dashed or other styles.

118

Formatting the Color of a Trendline EasyLanguage Essentials Programmers Guide

Formatting the Color of a Trendline

Onceatrendlineiscreated, thetrendline color can be changed using either the basic 16 colors or the 16 million
color palette. By using the trendline reference number captured when creating the trendline, format the color
of the trendline with the TL,_ SetColor reserved word.

Usage Example:
if Valuel > 0 then

TL_ SetColor (Valuel, Blue);

In this example, the color of the trendline is changed to blue.

Usage Example:
Value2 = RGB (15, 150, 50);
if Valuel > 0 then
TL SetColor (Valuel, Value2);

In this example, the color of the trendline is changed to the RGB color specified.

Extending a Trendline Left and Right

Once atrendlineis created we can extend the trendline right or left on the chart. Using the reference number
we captured when creating the trendline, we can extend the trendline with the TL. SetExtLeft and
TL_ SetExtRight reserved words. Y ou can also turn off extend right and extend | eft with the samereserved
words.

Usage Example:
if Valuel > 0 then begin
TL_ SetExtRight (Valuel, TRUE) ;
TL SetExtLeft (Valuel, TRUE) ;
end;

In this example, the trendline is extended left and right on the chart.

Usage Example:
if Valuel > 0 then begin
TL SetExtRight (Valuel, FALSE) ;
TL SetExtLeft (Valuel, FALSE) ;
end;

In this example, extend left and right are turned off for the trendline by setting the parameter switch to false.

Drawing Objects Finding a Trendline on the Chart 119

Finding a Trendline on the Chart

The Chart Analysis window makes the trendline information available to EasyL anguage. This information
includes how a trendline was created (see the table below), the color, and the reference ID number of the
trendline.

To find a specific trendline on a chart two specialized reserved words are used; TL GetFirst and
TL GetNext.TL GetFirst findsthereference ID number of thefirst trendline of a specific type. Type
ishow the trendline was added to the chart. T, GetNext getsthereference D number of the next trendline
of a specific type added to the chart.

Trendline and Text Object Creation Type Values:

1 - Trendline/text object created by the current analysis technique/strategy.

2 - Trendline/text object created by an analysis technique/strategy other than the current analysis tech-
nique/strategy or manually drawn by the user.

3 - Trendline/text object created by other means.

4 - Trendline/text object created by the current analysis technique/strategy or manually drawn by the
user.

5 - Trendline/text object created by an analysis technique/strategy other than the current analysis tech-
nique/strategy.

6 - Trendline/text object created by any analysis technique/strategy.

7 - Trendline/text object manually drawn by the user.

Usage Example:
if LastBarOnChart then begin
Valuel = TL GetFirst(7) ;
if TL GetColor (Valuel)= Red then
Value2 = TL GetValue(Valuel, Date, Time)
Else
While Value2 = 0 begin
Valuel = TL GetNext (Valuel, 7) ;
if TL GetColor (Valuel)= Red then
Value2 = TL GetValue(Valuel, Date, Time);
end;
end;
if Close crosses above Value2 then Alert;

Inthisexample, wearelooking for ared trendlinesowecan set analert for the closecrossing abovethetrendline.

120

Trendline Get Info Reserved Words EasyLanguage Essentials Programmers Guide

Trendline Get Info Reserved Words
There are anumber of additional trendline"TL_Get.." reserved words that allow access to trendline data and
information, including:

TL GetBeginDate, TL_ GetBeginTime, TL_GetBeginVal, TL_GetEndDate,
TL GetEndTime, TL_ GetEndVal, TL GetColor

Look in the EasylL anguage Dictionary and TS User Guide for a complete listing of trendline reserved words
and details on how they are used.

Trendline Errors

All of the reserved words that work with trendlines return anumeric error code representing the result of the
operation they performed. If the trendline reserved word was able to carry out its task successfully, it will
return avalue of 0. However, if an error occurred, the reserved word will return anumeric value representing
the specific error. Trendline Error Codes:

-2 - Theidentification number used was invalid (i.e., thereis no object on the chart with
this ID number).

-3 - The data number (Data2, Data3, etc.) passed to the function was invalid. There is no symbol (or
data stream) on the chart with this data number.

-4 - Thevalue passed to a SET function wasinvalid (for example, an invalid color or line thicknesswas
used).

-5 - The beginning and ending points were the same (only when working with trendlines). Can occur
when you relocate atrendline or change the begin/end points.

-6 - The function was unable to |oad the default values for the tool.

-7 - Unableto add the object. Possibly due to an out of memory condition. Your system resources have
been taxed and it cannot process the request.

-8 - Invalid pointer. your system resources have been taxed and it cannot process the request.

-9 - Previousfailure. Once an object returns an error code, no additional objects can be created by the
trading strategy, analysis technique, or function that generated the error.

-10 - Too many trendline objects on the chart.

Whenever any of the trendline reserved words are unable to perform their task, they will return an error code.
Once an error occurs, the trading strategy, analysis technique or function will stop manipulating all trendlines
from that bar forward. The trading strategy, analysis technique or function will continue to be evaluated, but
all statements that include trendline reserved words will return avalue of -9 (previous failure error) and will
not perform the intended action.

By assigning thetrendlinereserved wordsto avariable, you can capturethereturn valueerror code. Assignment
to avariableis optiona here and only needed to capture the return value.

Usage Example:
ValuelO TL_ SetExtRight (Valuel, FALSE);
Valuell = TL_SetExtLeft (Valuel, FALSE) ;
Print (Date, Time, ValuelO, Valuell) ;
In this example, the print statement outputs the error return values to the Print Log for each bar.

Writing Indicators for RadarScreen Trendline Errors 121

Writing Indicators for RadarScreen

RadarScreenisaninnovativetradingtool that allowsyouto monitor, scan and set al ertson hundredsof symbols,
using the same Easyl anguage indicators, PaintBars, and ShowMes that are used on historical charts. Radar-
Screenisalso your quotewindow, with the ability to set real-time alertsand dynamically sort and rank symbols
on any column.

Each row in RadarScreen is equivalent to a historical chart for which you can specify the bar interval and the
amount of history needed to calculate indicators.

Most indicators that work in charting will work in RadarScreen without modification (one exception is multi-
data indicators). The structure, logic and flow of an Easyl anguage RadarScreen indicator is the same as a
charting indicator.

Note: You can not apply strategies to RadarScreen.

Trade5tation RadarScreen - Dow-635 El [E! EWEWZ

Custam Price Channel Volume

Symbal | Interval Last UpperBand| LowerBiand 4 Net Chg Met %Chg High Lo Today
1 I
2 5500 5394 133,310
3 BA 5 Min 167 949 9337 5638755
4 EXC 5Min | 7459 7533 T3E3 3396737
5 EPD | SMin | 4178 4154 4080 1512766
& | JBHT & Min 7.9 2831 AT TE 1580266
T[] Shin | 7650 7735 7651 3659100
8 M 5Min | 2462 2450 2458 2420853
505G 5Min | 6659 6742 6534 805,800
10 PG 5Min | 630000 632 6352' 063 099% 6374 6277 9856777
11/SCOMP | § Min | 4487 38| 449451 #48446' 288 006% 449465 4462567 3,035260
12 A4 § Min 402 3 0 3387 013 038% 3443 3363 G247
13 AEP 5Min | 5095 51.02 S04 035 069% 5105 5043 2424944
14 AES 5Min | 2285 229 22780 006 028% 3299 2271 2356454
15 AIG 5Min | 6342 69 su- 013 019% 6960 6901 8807225
16 AMR. | SMin | 27.75| 28.07 2T62 003 -0.12% 830 2726 14792876
17| &P S5Min | 6091 61.31 024 039% 6131 6055 BOTTARR
18 BNl 5Min | 9057 91.08 203 -219% 9180 8957 4383407
18.C 5Min | 5281 5292 §275 030 056% 5330 5237 18.651.174
20 |cAL 5Min | J3EB 39.00 3@500 107 283% 3900 3715 5926325
21 |cAT 5Min | 7281 72.94 7265 095 134% 7294 T1B3| 6,689,555
22/CHRW 5Min | 5220 5114 5030 044 0B5% 5186 5030 1.28259
23CNP 5Min | 1893 1897 18890 004 021% 1899 1876 1,997.9T
24 | CHW & Min 5510 55 90 5546 034 061% 5614 5512 7630 -
ijal kI ®]\ Dow-&5 f

RadarScreen Window

Built into RadarScreen are hundreds of symbol listsbased onindustry groups, major market indicesand custom
symbol listsyou create. Theselists make it easy to popul ate the window. RadarScreen indicators can also ref-
erence hundreds of historical and snapshot fundamental stock fields.

122

Loading Additional Data for Accumulative Calculations EasyLanguage Essentials Programmers Guide

Loading Additional Data for Accumulative Calculations
By default, RadarScreen loads only the minimum required historical datato calculate an indicator. Indicators
that accumulate values bar by bar require additional datato calculate correctly.

To ensure that the cal culated values of these indicators are consi stent between Radar Screen and charting, you
need to load additional barsof data. Thisisdonewith the“Load additional datafor accumulative cal culations”
option on the Format Indicator~General tab.

Plot Statements in RadarScreen

Where as charting can only plot numeric values, RadarScreen can plot numeric, text, and true/fal sedataval ues.
In fact, each unique plot statement can display a different datatype. An indicator can have up to 99 plotsand
each plot is a unique column in the window.

Usage Example:
Plotl (Close, "The Close");
Plot2 (Close > Closel[l], "Up Bar");
if High > Highest (High,10) [1] then
Plot3 ("New High", "New High");

In this example, we are plotting the three data types in a RadarScreen window. The plot name becomes the
sub-column heading when an indicator has two or more plots.

ShowMes and PaintBars in RadarScreen

ShowMes and PaintBars can also be created for RadarScreen. Generally, these types of indicators only plot
when acondition ismet. In RadarScreen, ShowMes and PaintBarswill display ablank cell until the condition
istrue, then the plot valueisdisplay. Y ou can rewrite a charting ShowMe or Paintbar to display more useful
information for RadarScreen.

Usage Example:
inputs: Len(1) ;
vars: Text("");
if Lastbaronchart then begin
if Low < Lowest (Low, Len) [1] and Close > Close[l] then begin

Text = "KeyRevUp"; Alert ; SetPlotBGColor(l, Cyan); end
else begin Text = "No Pattern"; SetPlotBGColor (l, White); end;
if High > Highest (High, Len) [1] and Close < Close[l] then begin
Text = "KeyRevDn"; Alert; SetPlotBGColor(l, Red); end
else begin Text = "No Pattern"; SetPlotBGColor (l, White); end;
Plotl (Text, "Key Rev");

end;
Inthisexample, the charting ShowM esKeyRevUp and KeyRevDn arecombined into one Radar Screen ShowMe
that displays atext message and colors the background of the cell.

Note: To save space above, multiple statements were placed on the same line separated by a colon.

Writing Indicators for RadarScreen Conditional Plot Color Styling in RadarScreen 123

Conditional Plot Color Styling in RadarScreen

As discussed earlier, conditional plot styling is the ability to change the color or width of a plot based on a
specified price or indicator criteria. Each of the plotsin an indicator can be conditionally set to change color
and width based on your criteria, on abar-by-bar and real-time basis. In RadarScreen we can al so set the back-
ground color of acell conditionally.

The two plot styling reserved words used in RadarSceen are:
SetPlotColor (PlotN, Color) changes the plot foreground color for the specified plot number to the spec-
ified color. There are 16 legacy colors available in EasylL anguage, a ong with the 16-million color pal-
lete.

SetPlotBGColor (PlotN, Color) changes the plot background color for the specified plot number to the
specified color. Chart Analysis has no concept of background color and the SetPlotBGColor command
isignored.

Usage Example:
if Close > Average (Close,10) then

SetPlotColor (1, Cyan)

else

SetPlotColor (1, Red);
Plotl (Average (Close, 10), "MovAvg") ;
Usage Example:

if Close > Average(Close,10) then
SetPlotBGColor (1, DarkBlue)
else
SetPlotBGColor (1, DarkRed) ;
Plotl (Average (Close, 10), "MovAvg") ;

Gradient Background Cell Colors
The GradientColor function returns a color within arange of two specified colors, based on avalue within a
specified rangeof values. Thisallowsindicatorsto display detailed level sof intensity and rel ative comparisons.

Usage Example:
Valuel = SlowK(14) ;

Value2 = GradientColor(Valuel, 0, 100, Cyan, Red);
SetPlotBGColor (1, Value2) ;
Plotl (Valuel, "SlowK") ;

In this example, the GradientColor function returns an RGB color between cyan and red, based on the value
of SlowK.

124 Gradient Background Cell Colors EasyLanguage Essentials Programmers Guide

GetApplnfo

GetApplnfo (get application information) is areserved word that returns information about the environment
inwhich an EasyL anguage analysistechniqueisrunning. Thisallowsyouto makedecisionsbased theanalysis
window, strategy automation status, optimization status, and other environmental information.

The GetA pplnfo reserved word has oneinput which determinestheinformation to retrieve. Thevaluereturned
is specific to the field being requested. See the TS User Guide for more information. The fields are numeric
constants and can be found in the dictionary.

GetApplnfo(aiApplicationType)
aiApplicationType allows you to identify the calling application.
0 = Unknown, 1 = Charting, 2 = RadarScreen, 3 = OptionStation

Usage Example:
if GetAppInfo(aiApplicationType) = 1 then

SetPlotColor (1, Red);
if GetAppInfo(aiApplicationType)
SetPlotBGColor (1, DarkRed) ;

2 then

In this example, the plot color for an indicator running in charting is set to red. If the indicator is running in
RadarScreen it will set the background color of the cell to dark red.

GetApplnfo(aiOptimizing)
aiOptimizing allows you to identify whether the charting application is currently running an optimization.
0 = Not Optimizing, 1 = Running an optimization

Usage Example:
if GetAppInfo(aiOptimizing) <> 1 then
Print (" Date ", Date, "Time", Time, "Close", Close);

In this example, theindicator or strategy will bypass the Print statement while running an optimization oper-
ation.

Additional GetApplnfo Fields
Other GetApplnfo fields include: aiOptionStationPane, ai SpaceToRight, aiPercentChange, ai StrategyAuto,
ai StrategyAutoConf, ailntrabarOrder, aiRea TimeCalc. New fields may added as the language expands.

Look in the EasyLanguage Dictionary and TS User Guide for a complete listing of Additional GetApplnfo
fields and details on how they are used.

Importing / Exporting EasyLanguage Gradient Background Cell Colors 125

Importing / Exporting EasyLanguage

Every indicator and strategy that is built into TradeStation is written in EasyLanguage. The EasylL anguage
Import/Export Wizard (File Menu) allows easy transfer of indicators and strategies so you can copy them to
and from another computer, share with others traders, or backup your work.

The Import/Export Wizard steps you through the process of importing or exporting Easyl anguage analysis
techniquesinto or out of acomputer. When exporting, thewizard createsafile with the extension ".eld" which
isshort for EasyL anguagedocument. This.eld filecanthenbeusedtotransfer theanal ysi stechniquesto another
computer with TradeStation. Just click on an .eld file and the Import/Export Wizard automatically starts.

]

Import/Export Wizard

Please select @ Wizard from the list below:

Import Easylanguage from TradeStation.com
Import Easylanguage file (ELD, ELS or ELA]

port Fasyl anguage Documerts file (ELD)
Export Easylanguage Documents file (ELD) protected

Description

Export analysis techniques to an Easylanguage Documents
file (ELD) for use on a computer with the same version of
TradeStation.

I Mead =][Cancel] [Help]

EasylLanguage Import/Export Wizard

Any Easyl anguage functions associated with the analysis techni ques being exported are automatically added
to the exported .eld file.

Note: Indicators and strategies are stored in large database files in two formats on your computer. First, they
are stored together as text files that can be opened for viewing and editing. Second, they are stored together
asexecutablefilesthat can be inserted in achart, RadarScreen or OptionStation. These filesreside in the 'my-
work’ folder in the TradeStation folder.

Protected ELD Files

Developers who wish to protect their creative work, can export analysis techniquesin a’ protected’” mode. In
thisprotected mode, only the executabl e Indicator or Strategy isexported and not the associated EasylL anguage
code.

Note: Y ou can not recover your Easyl anguage code from aprotected .eld file, so make sureyou awaysbackup
your custom work.

126 TradeStation Support Site EasyLanguage Essentials Programmers Guide

Learning more about EasyLanguage

TradeStation User Guide

The TradeStation User Guide is your ready reference to descriptions of product features and to detailed pro-
cedural instructions on their use. In addition, the User Guide includes definitions of EasyL anguage analysis
techniques, functions, and strategies along with other conceptual topicsrelating to EasyL anguage and the use
of the TradeStation platform.

The TradeStation User Guide may be accessed from the Help menu in the TradeStation platform.

TradeStation Support Site

The TradeStation Support Center on the TradeStation.com website contains many additional Easyl anguage
and TradeStati on Platform support and trai ning resourcesdesi gned to hel pyou get up to speed with TradeStation
and EasyL anguage quickly.

The TradeStation Support Center may be accessed from the home page for TradeStation Securities at
www.tradestation.com, or from the Help menu in the TradeStation platform. From this site you can access all
of the following support resources and tools.

Live Training

Providing intensive training, our comprehensive two-day EasyL anguage Bootcamp training course cov-
ers everything from the basics of creating indicators and strategies, to understanding and utilizing the
more advanced features of EasyL anguage.

Online Seminars

TradeStation’s Online Seminars deliver alive training seminar directly to your home or office. When
you login to one of our virtual classrooms, you will both hear and see the instructor's presentation in
realtime. Clients may interact with the instructor by submitting questions during the presentation. All
online seminars are archived for viewing at a time more convenient for you.

EasyL anguage Library

The EasyLanguage Library isacommunity forum where TradeStation clients from all over the world
come together to share EasyL anguage ideas and EasyL anguage code. Each post in the library contains
an analysis technique, concept documentation, help resources, and discussion posts. Thelibrary isa
great way to learn what other traders are working on, developing new ideas and improving your pro-
gramming skills.

Books
TradeStation offers a number of free downloadable books covering EasyL anguage, the TradeStation
platform, and general market information.

We also offer afor sale “EasyL anguage Home Study Course” based on our popular live BootCamp
course. Thiswork-at-your-own-pace course is an expanded version of the live BootCamp course with
20 additional exercises and examples. If you can't attend alive BootCamp event, thisis the next best
thing.

Learning more about EasyLanguage TradeStation Support Site 127

Third Party Consultants

TradeStation Technologies, Inc. administers adirectory of independent, EasyL anguage Specialists who
provide custom EasyL anguage programming services and other educational materialsto assist you in
implementing trading strategies with TradeStation.

The EasyLanguage Speciadist directory provides contact information for independent, third-party Easy-
Language programmers for the TradeStation platform. Services and rates vary by individual and are
established at the sole discretion of each EasylL anguage Specialist. TradeStation does not certify or
endorse or recommend any of the persons or companies listed, or their qualifications or expertise.

Community Support Forums

The EasyL anguage community support forums are afree and easy way to ask simple EasyL anguage
related question and get EasyL anguage support. The support forums are monitored and questions
answered by our customer support team.

You can also view posted question from other traders and programmers and see the responses as well.
Often the question you have has aready been asked and you can save time using the forum search fea
tures to find topics quickly.

Trader Wiki

Thisisthe placeto get and to share knowledge about Easyl anguage. The Trader Wiki is a user-created
and user-managed resource. Anyone can create or modify content. If you think information is missing,
add it. If you see something that iswrong, correct it. The Trader Wiki isjust another additional refer-
ence and educational tool to help you become more proficient in EasyLanguage.

The web address for the Trader Wiki is:
https://www.tradestation.com/wiki/display/EasyL anguage/Home

Note: The postings on the Trader Wiki site reflect the personal views of the authors and do not necessar-
ily represent the views, positions, or opinions of TradeStation Securities.

128 TradeStation Support Site EasyLanguage Essentials Programmers Guide

TradeStation EasyLanguage Support Resources

TradeStation EasyL anguage Support

TradeStation users have access to awide variety of Easyl anguage support resources designed to help
both beginners and advanced users learn how to write custom strategies and studies, including EasyL an-
guage Support Discussion Forums, the EasyLanguage Library, as well as Easyl anguage Books.

EasyL anguage Consulting Services*

EasyL anguage Support Professionals are available to provide private, phone-based EasyL anguage con-
sulting. EasylL anguage Consulting is offered by TradeStation Securities for $150/hr. Please note that
thereis aminimum charge of $50 for the first 20 minutes.

Phone: (800) 823-2462 or (954) 652-7676

Monday - Friday, 9:30am - 6:30pm ET

* EasyL anguage Consulting Services are technical support services provided by TradeStation Securities, Inc., an affiliate
of TradeStation Technologies, the company that developed and owns the technologies in TradeStation. Neither company
offersor suggeststrading strategiesor systems, or investment or trading advice, of any kind. The sole purpose of the service
isto help you express, in EasyLanguage, your personal trading strategies. Solely you assume the risk that the technical
suggestions you receive in the service accurately represent your trading strategy and the intent or objective of what you
are seeking to accomplish with your strategy. Y our use of EasyL anguage Consulting Services constitutes a conclusive
acknowledgment and agreement by you that you knowingly and fully assumethisrisk. EasylL anguageisaregistered trade-
mark of TradeStation Technologies. It is the policy of TradeStation Securities, in the performance of EasyL anguage®
consulting services, not to share or publish your specific trading strategies with or for the benefit of other customers.

Appendix A Volume Reserved Words Usage Tables 129

Appendix A

Volume Reserved Words Usage Tables

To atrader, volume refers to the number of shares or contracts traded, while ticks or tick count refers to the number of
transactions. Thesewordsare also part of EasyL anguage, as are some variations on them such asupTicks and downTicks.
Althoughtheir EasyL anguage meaningscoincidewith general trading terminol ogy, they may be processed differently when
applied to different types of charts and in RadarScreen.

These factors will affect how the words are processed:

Type of window:
m Chart Analysis

= RadarScreen
Type of symbol:
= Stock

m Electronic futures

m Pit-traded futures

Chart interval:
= Intra-day

m Daily, weekly, monthly

Formatting:
m Intra-day set to Trade Volume or Tick Count

For more detailed information please see the reference tables below:

EasyLanguage Essentials Programmers Guide

Volume Reserved Words Usage Tables

130

0 N b Telh numwnww_mm_._“_ﬂ_w_w, ay3 JleH SALIAAC] JoIRg UL umuhw_uﬁ_w"m“_“_“w_ m_._ro_._s_o_., uusdo

0 a 3213 :umuﬂwowgmmum___rn_u_w ayl jieH ALUMOC,Jo- 18NN uwumwuuﬁ_m."_.a”_“ﬂw_ u_._H_.__o> syuLumoq
(saseys) swnjon jeroL ' 3213 :ummﬁwwgmm—.“ﬂ_“_w, ayy JleH SPIL dn 4o J3quiny umum.;mﬂmwmn__._ﬂv:MEz_o_; s121Ldn
(saleys) swnjoA |ej0L T Yol “wwm._mm.“_om wr___w_zg SA2IL JO Jequiny |BjoL (saieys) awnjop |30l sHoIL
(saleys) awnjoA |ej0L T (saseys uj) sya1 dn jo Jaquiny 4211 dn uo swnjoA

1213 Yaea Jo awnjoA ayj jleH

papeJ) (sa4eys) awnjop

(193216 10)
Aneg

Pa10912S ,AUN0D HIIL,,

PR109J2s ,2WN|OA IpeiL,

1eg 3IL-T

Pa32912s ,JuUN0D YL,

Po139[3s , SWNJOA DpeIL,,

(1eg swinjoA 10 ¥211-NINW ‘paseg-awll)
Aepenur

Bupaey) - s|oquAs)01

Jsaisju] uadQ pue AWNJOA ‘SHIIL O} Paje|ay SPIO)| paniasay abenbueAseg

pilopg poalasay afienbueqAses

131

Volume Reserved Words Usage Tables

Y 0 0 juguado

0 0 0 sy umoq
(s2J4BYS) 2WNIOA [BJOL on hwm_wmu__om.u:_.ﬁ:_o_; (Sa1eys) swn|oA [BjoL sya11dn
(saueys) awnjop [elo] 0 —thmmh_owm:_.,w_:_oh; (saleys) awn|op [ejo SHo1L
(saJeys) swnjop [BJo] (saseys u1) (saJeys) awWn|op |Bjo L awnjop

3O} Y2Ba JO 3WN[OA

Appendix A

(423246 J10)
Aeg

leg yoI1-T

(1211L-3InKW 10 poseg-awill)
Aepenug

uaa.osliepey - sjoquAis)ools

1S219)u] uadQ pue aWN[oA ‘SYD11 0} paje|ay SPIOAA PaAlasay abenbuerAseq

pi1opn pPaalasay abenbBuejAsey

EasyLanguage Essentials Programmers Guide

Volume Reserved Words Usage Tables

132

(s1oR.QUOD Uy

SPIL uMoQg uo

saumn4 papes

ISR USdo 0 90 Yoes Jo swnjoa si JleH SPIL imeq Jo Jequiniy peper ($)PRQuUod) SLN|oA Ajjesiuonoag
Juquado
Jseusul uado 0 0 SHIIL umMoq JO Isquungy 0 saumn4 papen-jid
_ (s1oeQuod uy) SHIL umoq uo sa.mn4 papen
Asatsur uado 0 3213 YoBS JO BALNJOA 3L JleH SPLL UM Jo Jequini papen (52e0U02) SWNJOA Ajjesiuogaag
sy UMOQq
Jseuauy uado 0 0 P11 umog Jo sequiny 0 seumny papeg-jid
(s30eQuod uy) . sy dn uo saumng papet}
(spe1Ue) SULINoA o) t 213 Yoea JO [UNjoA By JleH SP1Ldn Jo ssquiny papen ($1220U02) SLWNJOA Ajjeoiuogazg
s321Ldn
(spenjuon) swnjoa (5oL T 0 211 dn Jo Jquiny i} saumng papen-id
Jseusqu] uxdp pue (s1pequoo u) _ saamng papesy
BIWNJOA JO [01 T 0N DB JO DUNJOA SPIL IO Bquini 1oL (s1e4uem) BWNPA 12301 Ajjeiuogaag
1L
Fsasnul usdo pue saumng pape.g-j!
BLUNOA JO €01 ¥ 0 SHILL JO JsquInp |01 0 N4 papen-jid
~ (s10RQUOD L) d Sa11 dn uo saumng pepeny
(spenuoo) swinjoa |20 T 3907 YIES JO BWN[OA BT JIEH AL AN Jo ssquiny papen (S)9e0U03) BWNjoA Ajjeaiuogoag
wnjop
(sperjuoo) awnjoa |50) T 0 s211 dn jo Jquiny 0 saumng papen-id

(41332246 J10) Ajleqg

Pa3raas Junod Wi,

Pa323|as ,IWNJOA 3ped],,

Jeg HU-T

Pe3R39S ,JUN0D AL,

Pa30a|as ,WNJOA Ipel],,

(4eg SwWn|oA 1o }3G-Bn| ‘paseg-awi))

Buipieyd - sjoquis sainingd

Aepenur

}seleju| uedQ pue ewn|oA ‘syd1] O) peje|ey SPIOA peAalesey ebenbueisesy

adA] seamgng

plopm paalasay
abenbueAse3

133

Volume Reserved Words Usage Tables

Jsadagul uado

3saua3ul uadp

3sa433u] uado

saining
pepeJy Ajjediuoiyde|3

Appendix A

juguadgo
3sa.3qup uado 0] sainjng pepesi-iid
saining
3sauu usdo 1saa3u] uado 3saJajul uado O ik (R
syd1 uMmoq
jsaJsul uasdg 0 0 sa.njng pape.i-jid
(532B13U02) SWN|OA |BIOL (s3013U02) 3Wnjop |B30L (5122.3U02) BWIN|OA [2101 saJlnjng
papeJ3 Ajjeaiuoilda|3
sy211dn
(s30B.3U02) BWN|OA |E30L 0 0 sauning papesi-id
Isadequ] usdo pue Jsadsqu] usdp pue 1saisqu] uadp pue saJnyng
3UWIN|OA JO |30 BWIN|OA, JO |E30L BUWN|OA JO |30 papeJ3 Ajjeaiuoi3da|3
syd1L
sadsul usdQ pue
umc..__.”_oH.__, Jo _MHM._. 0 0 sa1ning papesi-iid
(s39B43U02) BWN|OA |BIOL (s30e13U00) BWNjOA [E3OL (s1283U02) BWN|OA |E10L sedn3ind
papedi Ajjeaiuoilda|3
swnjop
AWHUMH—COUU sunjon B30 (4] (0] sainjng pepesl-jid
(1230246 10) Ajleg 1eg ¥o11-1 (121 1-RINKW 1o paseg-swi]) e Aiiamimanh PiOM

uaaidsiepey - sjoquis saining

Aepesnur

1s213ju] uadp pue awnjo ‘syoIL 0) paje|ay SpJop paalasay abenbBuejAseq

paalosoy =26enbueAsey

