
1

2

1

ANFIS:
Adaptive-Network-Based Fuzzy Inference System

Jyh-Shing Roger Jang
Department of Electrical Engineering and Computer Science

University of California, Berkeley, CA 94720

Abstract

This paper presents the architecture and learning procedure underlying ANFIS (Adaptive-Network-based Fuzzy
Inference System), a fuzzy inference system implemented in the framework of adaptive networks. By using a hybrid
learning procedure, the proposed ANFIS can construct an input-output mapping based on both human knowledge
(in the form of fuzzy if-then rules) and stipulated input-output data pairs. In our simulation, we employ the ANFIS
architecture to model nonlinear functions, identify nonlinear components on-linely in a control system, and predict
a chaotic time series, all yielding remarkable results. Comparisons with artificail neural networks and earlier work
on fuzzy modeling are listed and discussed. Other extensions of the proposed ANFIS and promising applications
to automatic control and signal processing are also suggested.

I. Introduction

System modeling based on conventional mathematical tools (e.g., differential equations) is not well suited
for dealing with ill-defined and uncertain systems. By contrast, a fuzzy inference system employing fuzzy if-
then rules can model the qualitative aspects of human knowledge and reasoning processes without employing
precise quantitative analyses. This fuzzy modeling or fuzzy identification, first explored systematically by Takagi
and Sugeno [54], has found numerous practical applications in control [48, 38], prediction and inference [18, 19].
However, there are some basic aspects of this approach which are in need of better understanding. More specifically:

1. No standard methods exist for transforming human knowledge or experience into the rule base and database
of a fuzzy inference system.

2. There is a need for effective methods for tuning the membership functions (MF’s) so as to minimize the
output error measure or maximize performance index.

In this perspective, the aim of this paper is to suggest a novel architecture called Adaptive-Network-based Fuzzy
Inference System, or simply ANFIS, which can serve as a basis for constructing a set of fuzzy if-then rules with
appropriate membership functions to generate the stipulated input-output pairs. The next section introduces the
basics of fuzzy if-then rules and fuzzy inference systems. Section 3 describes the structures and learning rules of
adaptive networks. By embedding the fuzzy inference system into the framework of adaptive networks, we obtain
the ANFIS architecture which is the backbone of this paper and it is covered in section 4. Application examples
such as nonlinear function modeling and chaotic time series prediction are given in section 5. Section 6 concludes
this paper by giving important extensions and future directions of this work.

II. Fuzzy If-Then Rules and Fuzzy Inference Systems

A. Fuzzy If-Then Rules
�
Research supported in part by NASA Grant NCC 2-275, MICRO Grant 92-180, EPRI Agreement RP 8010-34, and BISC program.

�

IEEE Trans. on Systems, Man and Cybernetics, vol. 23, no. 3, pp. 665-685, May 1993

1

input output
database rule base

knowledge base

decision-making unit

defuzzification
interface

fuzzification
interface

(fuzzy) (fuzzy)

(crisp) (crisp)

Figure 1: Fuzzy inference system.

Fuzzy if-then rules or fuzzy conditional statements are expressions of the form IF A THEN B, where A and B
are labels of fuzzy sets [66] characterized by appropriate membership functions. Due to their concise form, fuzzy
if-then rules are often employed to capture the imprecise modes of reasoning that play an essential role in the
human ability to make decisions in an environment of uncertainty and imprecision. An example that describes a
simple fact is

If pressure is high, then volume is small.

where pressure and volume are linguistic variables [67], high and small are linguistic values or labels that are
characterized by membership functions.

Another form of fuzzy if-then rule, proposed by Takagi and Sugeno [53], has fuzzy sets involved only in the
premise part. By using Takagi and Sugeno’s fuzzy if-then rule, we can describe the resistant force on a moving
object as follows:

If velocity is high, then
���������	��
��������������������� 2 .

where, again, high in the premise part is a linguistic label characterized by an appropriate membership function.
However, the consequent part is described by a nonfuzzy equation of the input variable, velocity.

Both types of fuzzy if-then rules have been used extensively in both modeling and control. Through the use of
linguistic labels and membership functions, a fuzzy if-then rule can easily capture the spirit of a “rule of thumb”
used by humans. From another angle, due to the qualifiers on the premise parts, each fuzzy if-then rule can be
viewed as a local description of the system under consideration. Fuzzy if-then rules form a core part of the fuzzy
inference system to be introduced below.

A. Fuzzy Inference Systems

Fuzzy inference systems are also known as fuzzy-rule-based systems, fuzzy models, fuzzy associative memories
(FAM), or fuzzy controllers when used as controllers. Basically a fuzzy inference system is composed of five
functional blocks (Figure 1):

� a rule base containing a number of fuzzy if-then rules;

� a database which defines the membership functions of the fuzzy sets used in the fuzzy rules;

� a decision-making unit which performs the inference operations on the rules;

� a fuzzification interface which transforms the crisp inputs into degrees of match with linguistic values;

� a defuzzification interface which transform the fuzzy results of the inference into a crisp output.

Usually, the rule base and the database are jointly referred to as the knowledge base.
The steps of fuzzy reasoning (inference operations upon fuzzy if-then rules) performed by fuzzy inference

systems are:

2

C2

C1

C2

C1

(or min)

consequent partpremise part

type 3type 2type 1

average
weighted

average
weighted

w1*z1+w2*z2

w1+w2
=z

w1

z2=px+qy+r

z1=ax+by+c

z (centroid of area)

max

w2

Z

Z

w1

w2

X

X

Y

Y

z1

z2

A1 B1

A2 B2

multiplication

w1*z1+w2*z2

w1+w2
=z

Z

Z
x y

Figure 2: Commonly used fuzzy if-then rules and fuzzy reasoning mechanisms.

1. Compare the input variables with the membership functions on the premise part to obtain the membership
values (or compatibility measures) of each linguistic label. (This step is often called fuzzification).

2. Combine (through a specific T-norm operator, usually multiplication or min.) the membership values on the
premise part to get firing strength (weight) of each rule.

3. Generate the qualified consequent (either fuzzy or crisp) of each rule depending on the firing strength.

4. Aggregate the qualified consequents to produce a crisp output. (This step is called defuzzification.)

Several types of fuzzy reasoning [25, 26] have been proposed in the literature. Depending on the types of
fuzzy reasoning and fuzzy if-then rules employed, most fuzzy inference systems can be classified into three types
(Figure 2):

Type 1: The overall output is the weighted average of each rule’s crisp output induced by the rule’s firing strength
(the product or minimum of the degrees of match with the premise part) and output membership functions.
The output membership functions used in this scheme must be monotonically non-decreasing [55].

Type 2: The overall fuzzy output is derived by applying “max” operation to the qualified fuzzy outputs (each of
which is equal to the minimum of firing strength and the output membership function of each rule). Various
schemes have been proposed to choose the final crisp output based on the overall fuzzy output; some of them
are center of area, bisector of area, mean of maxima, maximum criterion, etc [25, 26].

Type 3: Takagi and Sugeno’s fuzzy if-then rules are used [53]. The output of each rule is a linear combination of
input variables plus a constant term, and the final output is the weighted average of each rule’s output.

Figure 2 utilizes a two-rule two-input fuzzy inference system to show different types of fuzzy rules and fuzzy
reasoning mentioned above. Be aware that most of the differences lie in the specification of the consequent part
(monotonically non-decreasing or bell-shaped membership functions, or crisp function) and thus the defuzzification
schemes (weighted average, centroid of area, etc) are also different.

III. Adaptive Networks: Architectures and Learning Algorithms

3

vector vector

x1

x2

y1

y2

input output

Figure 3: An adaptive network.

This section introduces the architecture and learning procedure of the adaptive network which is in fact a
superset of all kinds of feedforward neural networks with supervised learning capability. An adaptive network,
as its name implies, is a network structure consisting of nodes and directional links through which the nodes are
connected. Moreover, part or all of the nodes are adaptive, which means each output of these nodes depends on
the parameter(s) pertaining to this node, and the learning rule specifies how these parameters should be changed to
minimize a prescribed error measure.

The basic learning rule of adaptive networks is based on the gradient descent and the chain rule, which was
proposed by by Werbos [61] in the 1970’s. However, due to the state of artificial neural network research at that
time, Werbos’ early work failed to receive the attention it deserved. In the following presentation, the derivation is
based on the author’s work [11, 10] which generalizes the formulas in [41].

Since the basic learning rule is based the gradient method which is notorious for its slowness and tendency to
become trapped in local minima, here we propose a hybrid learning rule which can speed up the learning process
substantially Both the batch learning and the pattern learning of the proposed hybrid learning rule is discussed
below.

A. Architecture and Basic Learning Rule

An adaptive network (Figure 3) is a multi-layer feedforward network in which each node performs a particular
function (node function) on incoming signals as well as a set of parameters pertaining to this node. The nature
of the node functions may vary from node to node, and the choice of each node function depends on the overall
input-outputfunction which the adaptive network is required to carry out. Note that the links in an adaptive network
only indicate the flow direction of signals between nodes; no weights are associated with the links.

To reflect different adaptive capabilities, we use both circle and square nodes in an adaptive network. A square
node (adaptive node) has parameters while a circle node (fixed node) has none. The parameter set of an adaptive
network is the union of the parameter sets of each adaptive node. In order to achieve a desired input-output
mapping, these parameters are updated according to given training data and a gradient-based learning procedure
described below.

Suppose that a given adaptive network has L layers and the k-th layer has #
��
 �

nodes. We can denote the node
in the

�
-th position of the

-th layer by

�
 � � � , and its node function (or node output) by
���� . Since a node output

depends on its incoming signals and its parameter set, we have
� �� ��� �� ��� ��� 1

1
�
	�	
	 � ��� 1

� �� 1 � ��������
� ��	
	�	 � � (1)

where � , � , � , etc. are the parameters pertaining to this node. (Note that we use
���� as both the node output and

node function.)
Assuming the given training data set has � entries, we can define the error measure (or energy function) for

the � -th (1 �������) entry of training data entry as the sum of squared errors:

��� � # ������
 "! 1

�$# &% �(' � �)% � � 2 � (2)

where
&% � is the * -th component of � -th target output vector, and

� � &% � is the * -th component of actual output

vector produced by the presentation of the � -th input vector. Hence the overall error measure is
� �,+.-� ! 1

� �
.

4

In order to develop a learning procedure that implements gradient descent in
�

over the parameter space, first
we have to calculate the error rate

�������� for � -th training data and for each node output
�

. The error rate for the
output node at

��� � � � can be calculated readily from equation (2):
	 � �
	 � �� % �

� '
2
�$# � % � ' � �� % � � 	 (3)

For the internal node at
��
 � � � , the error rate can be derived by the chain rule:

	 � �
	 � �� % �

� # � ��
 1 ��
 ! 1

	 � �
	 � ��
 1)% �

	 � ��
 1)% �	 � �� % � � (4)

where 1 �
 � � '
1. That is, the error rate of an internal node can be expressed as a linear combination of the

error rates of the nodes in the next layer. Therefore for all 1 �
 � �
and 1 � � � #

��
 �
, we can find

������������ � by

equation (3) and (4).
Now if � is a parameter of the given adaptive network, we have

	 � �
	 �

� �
�������

	 � �
	 ���

	 � �
	 � � (5)

where � is the set of nodes whose outputs depend on � . Then the derivative of the overall error measure
�

with
respect to � is 	 �

	 �
�

-�
� ! 1

	 � �
	 � 	 (6)

Accordingly, the update formula for the generic parameter � is

� � � '�� 	 �	 � � (7)

in which
�

is a learning rate which can be further expressed as

� �

� +! � ���� � 2 � (8)

where

is the step size, the length of each gradient transition in the parameter space. Usually, we can change the
value of

to vary the speed of convergence. The heuristic rules for changing

are discussed in section 5 where

we report simulation results.
Actually, there are two learning paradigms for adaptive networks. With the batch learning (or off-line learning),

the update formula for parameter � is based on equation (6) and the update action takes place only after the whole
training data set has been presented, i.e., only after each epoch or sweep. On the other hand, if we want the
parameters to be updated immediately after each input-output pair has been presented, then the update formula is
based on equation (5) and it is referred to as the pattern learning (or on-line learning). In the following we will
derive a faster hybrid learning rule and both of its learning paradigms.

B. Hybrid Learning Rule: Batch (Off-Line) Learning

Though we can apply the gradient method to identify the parameters in an adaptive network, the method is
generally slow and likely to become trapped in local minima. Here we propose a hybrid learning rule [10] which
combines the gradient method and the least squares estimate (LSE) to identify parameters.

For simplicity, assume that the adaptive network under consideration has only one output

��" � � " � �$# �&%' � � � � (9)

5

where
%'

is the set of input variables and � is the set of parameters. If there exists a function
�

such that the
composite function

��� #
is linear in some of the elements of � , then these elements can be identified by the least

squares method. More formally, if the parameter set � can be decomposed into two sets

� � � 1 � � 2 � (10)

(where � represents direct sum) such that
��� #

is linear in the elements of � 2, then upon applying
�

to equation
(9), we have � ����" � � " ��� � ��� # �&%' � � � � (11)

which is linear in the elements of � 2. Now given values of elements of � 1, we can plug � training data into equation
(11) and obtain a matrix equation: ��� �	�

(12)

where
�

is an unknown vector whose elements are parameters in � 2. Let
 � 2
 ��� , then the dimensions of�
,
�

and
�

are �� � ,
� 1 and �� 1, respectively. Since � (number of training data pairs) is usually

greater than
�

(number of linear parameters), this is an overdetermined problem and generally there is no exact
solution to equation (12). Instead, a least squares estimate (LSE) of

�
,
� �

, is sought to minimize the squared
error � ��� ' � � 2. This is a standard problem that forms the grounds for linear regression, adaptive filtering and
signal processing. The most well-known formula for

� �
uses the pseudo-inverse of

�
:� � � � ����� � � 1

��� � � (13)

where
� �

is the transpose of
�

, and
� � � � � � 1

� �
is the pseudo-inverse of

�
if
� � �

is non-singular. While
equation (13) is concise in notation, it is expensive in computation when dealing with the matrix inverse and,
moreover, it becomes ill-defined if

� � �
is singular. As a result, we employ sequential formulas to compute the

LSE of
�

. This sequential method of LSE is more efficient (especially when
�

is small) and can be easily modified
to an on-line version (see below) for systems with changing characteristics. Specifically, let the

�
th row vector of

matrix
�

defined in equation (12) be �
� � and the

�
th element of

�
be �
� � , then

�
can be calculated iteratively using

the sequential formulas widely adopted in the literature [1, 7, 28, 47]:� �
 1
� � ��� � �
 1 � �
 1

� �
� �
 1

' �
� �
 1

� � �
� �
 1

� � � ' � ��� � �
1

��� � �
1
� �

1
 � � � � 1

� � � � �
1
� � �

0 � 1 ������� � � ' 1

�
� (14)

where � � is often called the covariance matrix and the least squares estimate
� �

is equal to
�
- . The initial

conditions to bootstrap equation (14) are
�

0
�

0 and � 0
� � '

, where
�

is a positive large number and
'

is the
identity matrix of dimension

� � . When dealing with multi-output adaptive networks (
��" � � " � in equation (9)

is a column vector), equation (14) still applies except that �
� � is the

�
-th rows of matrix

�
.

This sequential least squares estimate of
�

can be interpreted as a Kalman filter [17] for the process� ��
 � 1
� � � ��
 � � (15)! ��
 � � � �
 � � ��
 � �#" ���%$ � � (16)

where
� ��
 �

=
�
� , ! ��
 � = � � and

� �
 �
= � � . For this reason, equation (14) is sometimes loosely referred to as

the Kalman filter algorithm. (Note that all our simulations described in later chapters are deterministic; there is no
noise added in the simulation settings.)

Now we can combine the gradient method and the least squares estimate to update the parameters in an adaptive
network. Each epoch of this hybrid learning procedure is composed of a forward pass and a backward pass. In
the forward pass, we supply input data and functional signals go forward to calculate each node output until the
matrices

�
and
�

in equation (12) are obtained, and the parameters in � 2 are identified by the sequential least
squares formulas in equation (14). After identifying parameters in � 2, the functional signals keep going forward
till the error measure is calculated. In the backward pass, the error rates (the derivative of the error measure w.r.t.
each node output, see equation(3) and (4)) propagate from the output end toward the input end, and the parameters
in � 1 are updated by the gradient method in equation (7).

For given fixed values of parameters in � 1, the parameters in � 2 thus found are guaranteed to be the global
optimum point in the � 2 parameter space due to the choice of the squared error measure. Not only can this hybrid

6

learning rule decrease the dimension of the search space in the gradient method, but, in general, it will also cut
down substantially the convergence time.

Take for example an one-hidden-layer back-propagation neural network with sigmoid activation functions. If
this neural network has � output units, then the

��" � � " � in equation (9) is a column vector. Let
� � � � be the inverse

sigmoid function � � � � �	� " � �
1
' � � � (17)

then equation (11) becomes a linear (vector) function such that each element of
� � ��" � � " ��� is a linear combination

of the parameters (weights and thresholds) pertaining to layer 2. In other words,� 1 = weights and thresholds of hidden layer,� 2 = weights and thresholds of output layer.
Therefore we can apply the back-propagation learning rule to tune the parameters in the hidden layer, and the
parameters in the output layer can be identified by the least squares method. However, it should be keep in mind
that by using the least squares method on the data transformed by

� � � � , the obtained parameters are optimal in
terms of the transformed squared error measure instead of the original one. Usually this will not cause practical
problem as long as

� � � � is monotonically increasing.

C. Hybrid Learning Rule: Pattern (On-Line) Learning

If the parameters are updated after each data presentation, we have the pattern learning or on-line learning
paradigm. This learning paradigm is vital to the on-line parameter identification for systems with changing
characteristics. To modify the batch learning rule to its on-line version, it is obvious that the gradient descent
should be based on

� �
(see equation (5)) instead of

�
. Strictly speaking, this is not a truly gradient search

procedure to minimize
�

, yet it will approximate to one if the learning rate is small.
For the sequential least squares formulas to account for the time-varying characteristics of the incoming data,

we need to decay the effects of old data pairs as new data pairs become available. Again, this problem is well
studied in the adaptive control and system identification literature and a number of solutions are available [7]. One
simple method is to formulate the squared error measure as a weighted version that gives higher weighting factors
to more recent data pairs. This amounts to the addition of a forgetting factor

�
to the original sequential formula:� �
 1

� � � � � �
 1 � �
 1
� �
� �
 1

' �
� �
 1

� � �
� �
 1

� 1��� � � ' � � � � �
1

��� � �
1
� ��
 � � � �

1

� � ��� �
1 �

�
� (18)

where the value of
�

is between 0 and 1. The smaller
� � * ��� � is, the faster the effects of old data decay. But a

small
� � * ��� � sometimes causes numerical unstability and should be avoided.

IV. ANFIS: Adaptive-Network-based Fuzzy Inference System
The architecture and learning rules of adaptive networks have been described in the previous section. Function-

ally, there are almost no constraints on the node functions of an adaptive network except piecewise differentiability.
Structurally, the only limitation of network configuration is that it should be of feedforward type. Due to these
minimal restrictions, the adaptive network’s applications are immediate and immense in various areas. In this
section, we propose a class of adaptive networks which are functionally equivalent to fuzzy inference systems. The
proposed architecture is referred to as ANFIS, standing for Adaptive-Network-based Fuzzy Inference System. We
describe how to decompose the parameter set in order to apply the hybrid learning rule. Besides, we demonstrate
how to apply the Stone-Weierstrass theorem to ANFIS with simplified fuzzy if-then rules and how the radial basis
function network relate to this kind of simplified ANFIS.

A. ANFIS architecture

For simplicity, we assume the fuzzy inference system under consideration has two inputs � and
�

and one
output � . Suppose that the rule base contains two fuzzy if-then rules of Takagi and Sugeno’s type [53]:

Rule 1: If � is
�

1 and
�

is
�

1, then
�

1
� � 1

� �
	
1
� � �

1 �
Rule 2: If � is

�
2 and

�
is
�

2, then
�

2
� � 2

� �
	
2
� � �

2 	

7

y

y

2

1

2

1

2

1

2

1

layer 5

layer 4

layer 3layer 2

layer 1

yx

yxB

B

A

A

f2w2

1w 1f

w2

1w

w2

1wx

f

X

X

Y

Y

A B

A B

x

1w

w2

1f

f2

= p x +q y +r

= p x +q y +r =

w2w1

2w 2ff1w1 +

2w 2ff1w1f = +
+

(a)

(b)

2

1

2

1

2

1

Figure 4: (a) Type-3 fuzzy reasoning; (b) equivalent ANFIS (type-3 ANFIS).

then the type-3 fuzzy reasoning is illustrated in Figure 4(a), and the corresponding equivalent ANFIS architecture
(type-3 ANFIS) is shown in Figure 4(b). The node functions in the same layer are of the same function family as
described below:

Layer 1 Every node
�

in this layer is a square node with a node function� 1�������
	������� (19)

where is the input to node
�
, and � � is the linguistic label (small , large, etc.) associated with this node

function. In other words,
� 1� is the membership function of � � and it specifies the degree to which the given satisfies the quantifier � � . Usually we choose ���
	����� to be bell-shaped with maximum equal to 1 and

minimum equal to 0, such as the generalized bell function

� � 	�����
� 1

1 ��� ������� 	 	 � 2 !#" 	 � (20)

or the Gaussian function ���
	�����$�&%')(�+* � *-, �. � � 2 ! � (21)

where / . � , 0 � , , ��1 (or / . � , , ��1 in the latter case) is the parameter set. As the values of these parameters
change, the bell-shaped functions vary accordingly, thus exhibiting various forms of membership functions
on linguistic label � � . In fact, any continuous and piecewise differentiable functions, such as commonly
used trapezoidal or triangular-shaped membership functions, are also qualified candidates for node functions
in this layer. Parameters in this layer are referred to as premise parameters.

Layer 2 Every node in this layer is a circle node labeled Π which multiplies the incoming signals and sends the
product out. For instance, 2 � ��� � 	�����435��6
	���7)��� � � 1 � 2 8 (22)

Each node output represents the firing strength of a rule. (In fact, other T-norm operators that perform
generalized AND can be used as the node function in this layer.)

Layer 3 Every node in this layer is a circle node labeled N. The
�
-th node calculates the ratio of the

�
-th rule’s

firing strength to the sum of all rules’ firing strengths:2 � �
2 �2

1 �
2

2

� � � 1 � 2 8 (23)

8

C2

C1

+
+=f 1w 1f f2w2

+1w 1f f2w2

1w 2w

=

2f

f1
BA

BA

f

w1

2w

f1w1

2w 2f

A

A

B

B

1

2

1

2

1

2

1

2

(b)

(a)

y

x w1

2w

X

X

Y

Y
x y

Z

Z

1w

2w

Figure 5: (1) Type-1 fuzzy reasoning; (b) equivalent ANFIS (type-1 ANFIS).

For convenience, outputs of this layer will be called called normalized firing strengths.

Layer 4 Every node
�

in this layer is a square node with a node function
� 4�4� 2 � � � � 2 � � (� ��� � 7 ��� � � � (24)

where
2 � is the output of layer 3, and / (� , � � , � ��1 is the parameter set. Parameters in this layer will be referred

to as consequent parameters.

Layer 5 The single node in this layer is a circle node labeled Σ that computes the overall output as the summation
of all incoming signals, i.e.,

� 5
1
������% � .	�
� ����#(��� ��� �

2 � � � ��� � 2 � � �
� � 2 � (25)

Thus we have constructed an adaptive network which is functionally equivalent to a type-3 fuzzy inference
system. For type-1 fuzzy inference systems, the extension is quite straightforward and the type-1 ANFIS is shown
in Figure 5 where the output of each rule is induced jointly by the output membership funcion and the firing
strength. For type-2 fuzzy inference systems, if we replace the centroid defuzzification operator with a discrete
version which calculates the approximate centroid of area, then type-3 ANFIS can still be constructed accordingly.
However, it will be more complicated than its type-3 and type-1 versions and thus not worth the efforts to do so.

Figure 6 shows a 2-input, type-3 ANFIS with 9 rules. Three membership functions are associated with each
input, so the input space is partitioned into 9 fuzzy subspaces, each of which is governed by a fuzzy if-then rules.
The premise part of a rule defines a fuzzy subspace, while the consequent part specifies the output within this fuzzy
subspace.

B. Hybrid Learning Algorithm

From the proposed type-3 ANFIS architecture (Figure 4), it is observed that given the values of premise
parameters, the overall output can be expressed as a linear combinations of the consequent parameters. More
precisely, the output

�
in Figure 4 can be rewritten as

� � � 1� 1 � � 2

�
1 � � 2� 1 � � 2

�
2� 2

1
�

1 �
2

2
�

2� � 2 1 �� (1 � � 2 1 7�� � 1 � � 2 1 � � 1 � � 2 2 �� (2 � � 2 2 7�� � 2 � � 2 2 � � 2 �
(26)

9

3

2

2

1

1

3

3

2

1

321

(b)(a)

963

852

741

9
8
7
6
5
4
3
2
1

1
1

Y

X

Y

X

B

B

B

AAA

premise parameters
consequent parameters

x

y

f

A

A

A

B

B

B

x

y

Figure 6: (a) 2-input type-3 ANFIS with 9 rules; (b) corresponding fuzzy subspaces .

which is linear in the consequent parameters ((1, � 1, � 1, (2, � 2 and � 2). As a result, we have�
= set of total parameters,�

1 = set of premise parameters,�
2 = set of consequent parameters,

in equation (10); � ��� � and � ��� ��� � are the identity function and the function of the fuzzy inference system,
respectively. Therefore the hybrid learning algorithm developed in the previous chapter can be applied directly.
More specifically, in the forward pass of the hybrid learning algorithm, functional signals go forward till layer 4
and the consequent parameters are identified by the least squares estimate. In the backward pass, the error rates
propagate backward and the premise parameters are updated by the gradient descent. Table 1 summarizes the
activities in each pass.

- forward pass backward pass

premise parameters fixed gradient descent
consequent parameters least squares estimate fixed

signals node outputs error rates

Table 1: Two passes in the hybrid learning procedure for ANFIS.

As mentioned earlier, the consequent parameters thus identified are optimal (in the consequent parameter space)
under the condition that the premise parameters are fixed. Accordingly the hybrid approach is much faster than
the strict gradient descent and it is worthwhile to look for the possibility of decomposing the parameter set in the
manner of equation (10). For type-1 ANFIS, this can be achieved if the membership function on the consequent
part of each rule is replaced by a piecewise linear approximation with two consequent parameters (Figure 7). In
this case, again, the consequent parameters constitute set

�
2 and the hybrid learning rule can be employed directly.

However, it should be noted that the computation complexity of the least squares estimate is higher than that
of the gradient descent. In fact, there are four methods to update the parameters, as listed below according to their
computation complexities:

1. Gradient descent only : all parameters are updated by the gradient descent.

2. Gradient descent and one pass of LSE : the LSE is applied only once at the very beginning to get the initial
values of the consequent parameters and then the gradient descent takes over to update all parameters.

10

p qoutput output

1 1

Figure 7: Piecewise linear approximation of membership functions on the consequent part of type-1 ANFIS.

3. Gradient descent and LSE : this is the proposed hybrid learning rule.

4. Sequential (approximate) LSE only : the ANFIS is linearized w.r.t. the premise parameters and the extended
Kalman filter algorithm is employed to update all parameters. This has been proposed in the neural network
literature [45, 44, 43].

The choice of above methods should be based on the trade-off between computation complexity and resulting
performance. Our simulations presented in the next section are performed by the third method. Note that the
consequent parameters can also be updated by the Widrow-Hoff LMS algorithm [63], as reported in [46]. The
Widrow-Hoff algorithm requires less computation and favors parallel hardware implementation, but it converges
relatively slowly when compared to the least square estimate.

As pointed out by one of the reviewers, the learning mechanisms should not be applied to the determination
of membership functions since they convey linguistic and subjective description of ill-defined concepts. We think
this is a case-by-case situation and the decision should be left to the users. In principle, if the size of available
input-output data set is large enough, then the fine-tuning of the membership functions are applicable (or even
necessary) since the human-determined membership functions are subject to the differences from person to person
and from time to time; therefore they are rarely optimal in terms of reproducing desired outputs. However, if the
data set is too small, then it probably does not contain enough information of the system under consideration. In
this situation, the the human-determined membership functions represent important knowledge obtained through
human experts’ experiences and it might not be reflected in the data set; therefore the membership functions should
be kept fixed throughout the learning process.

Interestingly enough, if the membership functions are fixed and only the consequent part is adjusted, the ANFIS
can be viewed as a functional-link network [21, 36] where the "enhanced representation" of the input variables are
achieved by the membership functions. This "enhanced representation" which takes advantage of human knowledge
are apparently more insight-revealing than the functional expansion and the tensor (outerproduct) models [36]. By
fine-tuning the membership functions, we actually make this "enhanced representation" also adaptive.

Because the update formulas of the premise and consequent parameters are decoupled in the hybrid learning
rule (see Table 1), further speedup of learning is possible by using other versions of the gradient method on the
premise parameters, such as conjugate gradient descent, second-order back-propagation [37], quick-propagation [5],
nonlinear optimization [58] and many others.

C. Fuzzy Inference Systems with Simplified Fuzzy If-Then Rules

Though the reasoning mechanisms (Figure 2) introduced earlier are commonly used in the literature, each of
them has inherent drawbacks. For type-1 reasoning (Figure 2 or 5), the membership functions on the consequence
part are restricted to monotonically non-decreasing functions which are not compatible with linguistic terms such as
"medium" whose membership function should be bell-shaped. For type-2 reasoning (Figure 2), the defuzzification
process is time-consuming and systematic fine-tuning of the parameters are not easy. For type-3 reasoning (Figure 2
or 4), it is just hard to assign any appropriate linguistic terms to the consequence part which is a nonfuzzy function
of the input variables. To cope with these disadvantages, simplified fuzzy if-then rules of the following form are
introduced:

If is big and 7 is small, then � is
�

.

where
�

is a crisp value. Due to the fact that the output � is described by a crisp value (or equivalently, a
singular membership function), this class of simplified fuzzy if-then rules can employ all three types of reasoning

11

mechanisms. More specifically, the consequent part of this simplified fuzzy if-then rule is represented by a step
function (centered at � � �

) in type 1, a singular membership function (at � � �
) in type 2, and a constant output

function in type 3, respectively. The three reasoning mechanisms are unified under this simplified fuzzy if-then
rules.

Most of all, with this simplified fuzzy if-then rule, it is possible to prove that under certain circumstance, the
resulting fuzzy inference system has unlimited approximation power to match any nonlinear functions arbitrarily
well on a compact set. We will proceed this in a descriptive way by applying the Stone-Weierstrass theorem [20, 40]
stated below.

Theorem 0.1 Let domain
�

be a compact space of � dimensions, and let � be a set of continuous real-valued
functions on

�
, satisfying the following criteria:

1. Identity function: The constant
� ����$� 1 is in � .

2. Separability: For any two points 1 �� 2 in
�

, there is an
�

in � such that
� �� 1 � �� � �� 2 � .

3. Algebraic closure: If
�

and � are any two functions in � , then
� � and . � � 0�� are in � for any two real

numbers . and 0 .
Then � is dense in � � � � , the set of continuous real-valued functions on

�
. In other words, for any �	� 0, and

any function � in � � � � , there is a function
�

in � such that
 � ���� * � ����
��� for all �� � .

In application of fuzzy inference systems, the domain in which we operate is almost always closed and bounded
and therefore it is compact. For the first and second criteria, it is trivial to find simplified fuzzy inference systems
that satisfy them. Now all we need to do is examine the algebraic closure under addition and multiplication.
Suppose we have two fuzzy inference systems

�
and ˜� ; each has two rules and the output of each system can be

expressed as

�
: � �

2
1
�

1 �
2

2
�

22
1 �

2
2

� (27)

˜� : ˜� � ˜
2

1 ˜� 1 � ˜
2

2 ˜� 2

˜
2

1 � ˜
2

2

� (28)

where
�

1,
�

2, ˜� 1 and ˜� 2 are constant output of each rule. Then . � � 0 ˜� and � ˜� can be calculated as follows:

. � � 0 ˜� � .
2

1
�

1 �
2

2
�

22
1 �

2
2

� 0 ˜
2

1 ˜� 1 � ˜
2

2 ˜� 2

˜
2

1 � ˜
2

2

�
2

1 ˜
2

1 � . � 1 � 0 ˜� 1 � �
2

1 ˜
2

2 � . � 1 � 0 ˜� 2 � �
2

2 ˜
2

1 � . � 2 � 0 ˜� 1 � �
2

2 ˜
2

2 � . � 2 � 0 ˜� 2 �2
1 ˜
2

1 �
2

1 ˜
2

2 �
2

2 ˜
2

1 �
2

2 ˜
2

2

�

� ˜� �
2

1 ˜
2

1
�

1 ˜� 1 �
2

1 ˜
2

2
�

1 ˜� 2 �
2

2 ˜
2

1
�

2 ˜� 1 �
2

2 ˜
2

2
�

2 ˜� 22
1 ˜
2

1 �
2

1 ˜
2

2 �
2

2 ˜
2

1 �
2

2 ˜
2

2

� (29)

which are of the same form as equation (27) and (28). Apparently the ANFIS architectures that compute . � � 0 ˜�

and � ˜� are of the same class of
�

and ˜� if and only if the class of membership functions is invariant under
multiplication. This is loosely true if the class of membership functions is the set of all bell-shaped functions, since
the multiplication of two bell-shaped function is almost always still bell-shaped. Another more tightly defined
class of membership functions satisfying this criteria, as pointed out by Wang [56, 57], is the scaled Gaussian
membership function:

���
	�����
� . � %��(� * � * , �. � � 2 ! � (30)

Therefore by choosing an appropriate class of membership functions, we can conclude that the ANFIS with
simplified fuzzy if-then rules satisfy the four criteria of the Stone-Weierstrass theorem. Consequently, for any given
��� 0, and any real-valued function � , there is a fuzzy inference system

�
such that
 � ����� * � �����
���� for all � in

the underlying compact set. Moreover, since the simplified ANFIS is a proper subset of all three types of ANFIS

12

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

input variables

Typical Initial MF’s

Figure 8: A typical initial membership function setting in our simulation. (The operating range is assumed to be� 0 � 12! .)

in Figure 2, we can draw the conclusion that all the three types of ANFIS have unlimited approximation power to
match any given data set. However, caution has to be taken in accepting this claim since there is no mention about
how to construct the ANFIS according to the given data set. That is why learning plays a role in this context.

Another interesting aspect of the simplified ANFIS architecture is its functional equivalence to the radial basis
function network (RBFN). This functional equivalence is established when the Gaussian membership function is
used in the simplified ANFIS. A detailed treatment can be found in [14]. This functional equivalence provides
us with a shortcut for better understanding of ANFIS and RBFN and advances in either literatures apply to both
directly. For instance, the hybrid learning rule of ANFIS can be apply to RBFN directly and, vice versa, the
approaches used to identify RBFN parameters, such as clustering preprocess [31, 32], orthogonal least squares
learning [3], generalization properties [2], sequential adaptation [16], among others [15, 33], are all applicable
techniques for ANFIS.

V. Application Examples

This section presents the simulation results of the proposed type-3 ANFIS with both batch (off-line) and pattern
(on-line) learning. In the first two examples, ANFIS is used to model highly nonlinear functions and the results are
compared with neural network approach and earlier work. In the third example, ANFIS is used as an identifier to
identify a nonlinear component on-linely in a discrete control system. Lastly, we use ANFIS to predict a chaotic
time series and compare the results with various statistical and connectionist approaches.

A. Practical Considerations

In a conventional fuzzy inference system, the number of rules is decided by an expert who is familiar with the
system to be modeled. In our simulation, however, no expert is available and the number of membership functions
(MF’s) assigned to each input variable is chosen empirically, i.e., by examining the desired input-output data and/or
by trial and error. This situation is much the same as that of neural networks; there are no simple ways to determine
in advance the minimal number of hidden nodes necessary to achieve a desired performance level.

After the number of MF’s associated with each inputs are fixed, the initial values of premise parameters are set
in such a way that the MF’s are equally spaced along the operating range of each input variable. Moreover, they
satisfy � -completeness [25, 26] with � � 0 8 5, which means that given a value of one of the inputs in the operating
range, we can always find a linguistic label � such that � � ���� � � . In this manner, the fuzzy inference system
can provide smooth transition and sufficient overlapping from one linguistic label to another. Though we did not
attempt to keep the %�(�� � � ��� -completeness during the learning in our simulation, it can be easily achieved by using
the constrained gradient method [65]. Figure 8 shows a typical initial MF setting when the number of MF is 4 and
the operating range is � 0 � 12! . Note that throughout the simulation examples presented below, all the membership
functions used are the bell function defined in equation (20):

� � ����
� 1

1 �&� � �)� � � 2 !#" � (31)

13

1.0

0.5

0
cc-a c+a

2a

slope=-b/2a

x

MF

Figure 9: Physical meanings of the parameters in the bell membership function � � ���� � 1
1 � � ��������
	 2 �� . .

A

epochs

B

error
measure

rule 1: increase step size after 4 downs (point A)

rule 2: decrease step size after 2 combinations

of 1 up and 1 down (point B)

Figure 10: Two heuristic rules for updating step size � .

which contains three fitting parameters . , 0 and , . Each of these parameters has a physical meaning: , determines
the center of the corresponding membership function; . is the half width; and 0 (together with .) controls the slopes
at the crossover points (where MF value is 0.5). Figure 9 shows these concepts.

We mentioned that the step size � in equation (8) may influence the speed of convergence. It is observed that
if � is small, the gradient method will closely approximate the gradient path, but convergence will be slow since
the gradient must be calculated many times. On the other hand, if � is large, convergence will initially be very
fast, but the algorithm will oscillate about the optimum. Based on these observations, we update � according to the
following two heuristic rules (see Figure 10):

1. If the error measure undergoes 4 consecutive reductions, increase � by 10%.

2. If the error measure undergoes 2 consecutive combinations of 1 increase and 1 reduction, decrease � by 10%.

Though the numbers 10%, 4 and 2 are chosen more or less arbitrarily, the results shown in our simulation appear
to be satisfactory. Furthermore, due to this dynamical update strategy, the initial value of � is usually not critical
as long as it is not too big.

B. Simulation Results

Example 1: Modeling a Two-Input Nonlinear Function

In this example, we consider using ANFIS to model a nonlinear sinc equation

� � �
�
� , �� � 7�� � �

�
� ����
 3 �

�
� ��7��
7 8 (32)

14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250

epochs

ro
ot

 m
ea

n
sq

ua
re

d
er

ro
r

quick-prop neural network

ANFIS

Figure 11: RMSE curves for the quick-propagation neural networks and the ANFIS.

From the grid points of the range �+* 10 � 10 ! 3 �+* 10 � 10! within the input space of the above equation, 121 training
data pairs were obtained first. The ANFIS used here contains 16 rules, with four membership functions being
assigned to each input variable and the total number of fitting parameters is 72 which are composed of 24 premise
parameters and 48 consequent parameters. (We also tried ANFIS with 4 rules and 9 rules, but obviously they are
too simple to describe the highly nonlinear sinc function.)

Figure 11 shows the RMSE (root mean squared error) curves for both the 2-18-1 neural network and the
ANFIS. Each curve is the average of ten runs: for the neural network, this ten runs were started from 10
different set of initial random weights; for the ANFIS, 10 different initial step size (� 0 8 01 � 0 8 02 � 8'8�8 � 0 8 10) were
used. The neural network, containing 73 fitting parameters (connection weights and thresholds), was trained with
quick propagation [5] which is considered one of the best learning algorithms for connectionist models. Figure 11
demonstrate how ANFIS can effectively model a highly nonlinear surface as compared to neural networks. However,
this comparison cannot taken to be universal since we did not attempt an exhaustive search to find the optimal
settings for the quick-propagation learning rule of the neural networks.

The training data and other reconstructed surfaces at different epoch numbers are shown in Figure 12. (Since the
error measure is always computed after the forward pass is over, the epoch numbers shown in Figure 12 always end
with “.5”.) Note that the reconstructed surface after 0.5 epoch is due to the identification of consequent parameters
only and it already looks similar to the training data surface.

Figure 13 lists the initial and final membership functions. It is interesting to observe that the sharp changes of
the training data surface around the origin is accounted for by the moving of the membership functions toward the
origin. Theoretically, the final MF’s on both and 7 should be symmetric with respect to the origin. However, they
are not symmetric due to the computer truncation errors and the approximate initial conditions for bootstrapping
the calculation of the sequential least squares estimate 14.

Example 2: Modeling a Three-Input Nonlinear Function

The training data in this example are obtained from

����#(��� � � 1 � 0 � 5 � 7 � 1 � � � 1 � 5 � 2 � (33)

which was also used by Takagi et al. [52], Sugeno et al. [49] and Kondo [22] to verify their approaches. The ANFIS
(see Figure 14) used here contains 8 rules, with 2 membership functions being assigned to each input variable.
216 training data and 125 checking data were sampled uniformly from the input ranges � 1 � 6! 3 � 1 � 6 ! 3 � 1 � 6 ! and� 1 8 5 � 5 8 5! 3 � 1 8 5 � 5 8 5 ! 3 � 1 8 5 � 5 8 5 ! , respectively. The training data was used for the training of ANFIS, while the

15

Figure 12: Training data (upper left) and reconstructed surfaces at 0.5 (upper right), 99.5 (lower left) and 249.5
(lower right) epochs. (Example 1).

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10

x

(a) initial MF’s on x

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10

y

(b) initial MF’s on y

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10

x

(c) final MF’s on x

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10

y

(d) final MF’s on y

Figure 13: Initial and final membership functions of example 1.

16

output

z

y

x

C

C

B

B

A

A

predicted

1
2
3
4
5
6
7
8

2

2

1

1

2

1

Figure 14: The ANFIS architecture for example 2. (The connections from inputs to layer 4 are not shown.)

0

0.2

0.4

0.6

0.8

1

-5 0 5 10

(a) Initial MF’s on x, y and z

x, y and z

0

0.2

0.4

0.6

0.8

1

-5 0 5 10

(b) Final MF’s on x

x

0

0.2

0.4

0.6

0.8

1

-5 0 5 10

(c) Final MF’s on y

y

0

0.2

0.4

0.6

0.8

1

-5 0 5 10

(d) Final MF’s on z

z

Figure 15: Example 2, (a) membership functions before learning; (b)(c) (d) membership functions after learning.

checking data was used for verifying the identified ANFIS only. To allow comparison, we use the same performance
index adopted in [49, 22]:

� ��� � . �)% � . � % (�% � , % � � . � % % ��� � � � 1�
�
� ���

1

�� � � � * � � � �

�� � � �
 � 100% 8 (34)

where
�

is the number of data pairs; � � � � and
� � � � are

�
-th desired output and calculated output, respectively.

Figure 15 illustrates the membership functions before and after training. The training error curves with different
initial step sizes (from 0 8 01 to 0 8 09) are shown in Figure 16(a), which demonstrates that the initial step size is
not too critical on the final performance as long as it is not too big. Figure 16(b) is the training and checking
error curves with initial step size equal to 0 8 1. After 199.5 epochs, the final results are � ���
	��� � 0 8 043% and� ��� ����� � 1 8 066%, which is listed in Table 2 along with other earlier work [49, 22]. Since each simulation cited
here was performed under different assumptions and with different training and checking data sets, we cannot make
conclusive comments here.

Example 3: On-line Identification in Control Systems

17

0

1

2

3

4

0 50 100 150 200

epochs

av
er

ag
e

pe
rc

en
ta

ge
 e

rr
or

(%
) (a)

0

2

4

6

0 50 100 150 200

av
er

ag
e

pe
rc

en
ta

ge
 e

rr
or

(%
)

epochs

(b)

Figure 16: Error curves of example 2: (a) 9 training error curves for 9 initial step size from 0.01 (solid line) to
0.09; (b) training (solid line) and checking (dashed line) error curves with initial step size equal to 0.1.

Model � ��� 	��
(%) � ��� ����� (%) Parameter no. Training Set Size Checking Set Size

ANFIS 0.043 1.066 50 216 125
GMDH model [22] 4.7 5.7 - 20 20
Fuzzy model 1 [49] 1.5 2.1 22 20 20
Fuzzy model 2 [49] 0.59 3.4 32 20 20

Table 2: Example 2: comparisons with earlier work. (The last three rows are from [49].)

Here we repeat the simulation example 1 of [34] where a 1-20-10-1 neural network is employed to identify a
nonlinear component in a control system, except that we use ANFIS to replace the neural network. The plant under
consideration is governed by the following difference equation:

7 � � � 1 �
� 0 8 3 7 � � � � 0 8 6 7 � � * 1 � � � � ��� � ��� � (35)

where y(k) and u(k) are the output and input, respectively, at time index � , and the unknown function
� ��� � has the

form � � ��� � 0 8 6 � � � � � ��� � 0 8 3 � � � � 3 � ��� � 0 8 1 � � � � 5 � ��� 8 (36)

In order to identify the plant, a series-parallel model governed by the difference equation

ˆ7 � � � 1 �$� 0 8 3 ˆ7)� � � � 0 8 6 ˆ7 � � * 1 � � � � ��� � ��� (37)

was used where � � � � is the function implemented by ANFIS and its parameters are updated at each time index.
Here the ANFIS has 7 membership functions on its input (thus 7 rules, and 35 fitting parameters) and the pattern
(on-line) learning paradigm was adopted with a learning rate � � 0 8 1 and a forgetting factor � � 0 8 99. The input
to the plant and the model was a sinusoid ��� � � � �

�
� � 2 � ��� 250 � and the adaptation started at � � 1 and stopped

at � � 250. As shown in Figure 17, the output of the model follows the output of the plant almost immediately
even after the adaptation stopped at � � 250 and the ��� � � is changed to 0 8 5 � � � � 2 � ��� 250 � � 0 8 5 � � � � 2 � ��� 25 � after
� � 500. As a comparison, the neural network in [34] fails to follow the plant when the adaptation stopped at
� � 500 and the identification procedure had to continue for 50 � 000 time steps using a random input. Table 3
summarizes the comparison.

In the above, the MF number is determined by trial and errors. If the MF number is below 7 then the model
output will not follow the plant output satisfactorily after 250 adaptations. But can we decrease the parameter
numbers by using batch learning which is supposed to be more effective? Figure 18, 19 and 20 show the results
after 49.5 epochs of batch learning when the MF numbers are 5, 4 and 3, respectively. As can be seen, the ANFIS
is a good model even when the MF is as small as 3. However, as the MF number is getting smaller, the correlation
between � � ��� and each rule’s output is getting less obvious in the sense that it is harder to sketch � � ��� from each

18

-1

-0.5

0

0.5

1

0 100 200 300 400 500 600 700

(a) u(k)

time index (k)

-1

-0.5

0

0.5

1

0 100 200 300 400 500 600 700

(b) f(u(k)) and F(u(k))

time index (k)

-5

0

5

0 100 200 300 400 500 600 700

(c) plant output and model output

time index (k)

Figure 17: Example 3: (a) ��� � � ; (a)
� � ��� � ��� and � � ��� � ��� ; (b) plant output and model output.

Method Parameter Number Time Steps of Adaptation

NN 261 50000
ANFIS 35 250

Table 3: Example 3: comparison with NN identifier [34].)

19

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

initial MF’s

u

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

final MF’s

u

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

f(u) and F(u)

u

-1

0

1

-1 -0.5 0 0.5 1

each rule’s output

u

Figure 18: Example 3: batch learning with 5 MF’s.

rule’s consequent part. In other words, when the parameter number is reduced mildly, usually the ANFIS can still
do the job but at the cost of sacrificing its semantics in terms of the local-description nature of fuzzy if-then rules;
it is less of a structured knowledge representation and more of a black-box model (like neural networks).

Example 4: Predicting Chaotic Dynamics

Example 1, 2 and 3 show that the ANFIS can be used to model highly nonlinear functions effectively. In this
example, we will demonstrate how the proposed ANFIS can be employed to predict future values of a chaotic time
series. The performance obtained in this example will be compared with the results of a cascade-correlation neural
network approach reported in [39] and a simple conventional statistical approach, the auto-regressive (AR) model.

The time series used in our simulation is generated by the chaotic Mackey-Glass differential delay equation [29]
defined below:

˙��
� �$� 0 8 2 �� � * � �
1 � 10 � � * � � * 0 8 1 ��
� � 8 (38)

The prediction of future values of this time series is a benchmark problem which has been considered by a number of
connectionist researchers (Lapedes and Farber [24], Moody [32, 30], Jones et al. [15], Crower [39] and Sanger [42]).

The goal of the task is to use known values of the time series up to the point � � to predict the value at some
point in the future -� � � �

. The standard method for this type of prediction is to create a mapping from
�

points of the time series spaced
�

apart, that is, (��
� * � � * 1 � � � , ..., �� � * � � , ��
� �), to a predicted future value��
� � � � . To allow comparison with earlier work (Lapedes and Farber [24], Moody [32, 30], Crower [39]), the
values

� � 4 and
� � � � 6 were used. All other simulation settings in this example were purposedly arranged

to be as close as possible to those reported in [39].
To obtain the time series value at each integer point, we applied the fourth-order Runge-Kutta method to find

the numerical solution to equation (38). The time step used in the method is 0.1, initial condition �� 0 � � 1 8 2,
� � 17, and ��
� � is thus derived for 0 � � � 2000. (We assume ��
� � � 0 for � � 0 in the integration.) From the
Mackey-Glass time series ��
� � , we extracted 1000 input-output data pairs of the following format:

� ��
� * 18 ��� �� � * 12 � � ��
� * 6 ��� �� � � ; �� � � 6 � ! � (39)

20

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

initial MF’s

u

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

final MF’s

u

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

f(u) and F(u)

u

-2

0

2

-1 -0.5 0 0.5 1

each rule’s output

u

Figure 19: Example 3: batch learning with 4 MF’s.

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

initial MF’s

u

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

final MF’s

u

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

f(u) and F(u)

u

-10

0

10

-1 -0.5 0 0.5 1

each rule’s output

u

Figure 20: Example 3: batch learning with 3 MF’s.

21

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

x(t-18), x(t-12), x(t-6) and x(t)

(a) Initial MF’s for all four input variables.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

first input, x(t-18)

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

second input, x(t-12)

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

third input, x(t-6)

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

fourth input, x(t)

(b) Final MF’s for each input variable.

Figure 21: Membership functions of example 4, (a) before learning; (b) after learning.

where � � 118 to 1117. The first 500 pairs (training data set) was used for training the ANFIS while the remaining
500 pairs (checking data set) were used for validating the identified model. The number of membership functions
assigned to each input of the ANFIS was arbitrarily set to 2, so the rule number is 16. Figure 21 (a) is the initial
membership functions for each input variable. The ANFIS used here contains a total of 104 fitting parameters, of
which 24 are premise parameters and 80 are consequent parameters

After 499.5 epochs, we had
��� � � 	�� � 0 8 0016 and

��� � � ��� � � 0 8 0015, which are much better when
compared with other approaches explained below. The resulting 16 fuzzy if-then rules are listed in the Appendix.
The desired and predicted values for both training data and checking data are essentially the same in Figure 22(a);
their differences (Figure 22(b)) can only be seen on a finer scale. Figure 21 (b) is the final membership functions;
Figure 23 shows the RMSE curves which indicate most of the learning was done in the first 100 epochs. It is
quite unusual to observe the phenomenon that

��� � � 	��� � ��� � � ����� during the training process. Considering
both the RMSE’s are vary small, we conclude that: (1) the ANFIS has captured the essential components of
the underlying dynamics; (2) the training data contains the effects of the initial conditions (remember that we
set ��
� � � 0 for � � 0 in the integration) which might not be easily accounted for by the essential components
identified by the ANFIS.

As a comparison, we performed the same prediction by using the auto-regressive (AR) model with the same
number of parameters:

��
� � 6 �$� .
0 � .

1 ��
� � � .
2 �� � * 6 � �&8 8 8�� .

103 ��
� * 102 � 6 ��� (40)

22

0.4

0.6

0.8

1

1.2

1.4

200 400 600 800 1000

time

(a) Mackey-Glass Time Series

-0.01

-0.005

0

0.005

0.01

200 400 600 800 1000

time

(b) Prediction Errors

Figure 22: Example 3, (a) Mackey-Glass time series from �$� 124 to 1123 and six-step ahead prediction (which is
indistinguishable from the time series here); (b) prediction error.

where there are 104 fitting parameters . � , � � 0 to 103. From � � 712 to 1711, we extracted 1000 data pairs,
of which the first 500 were used to identify . � and the remaining were used for checking. The results obtained
through the standard least squares estimate are

� � � � 	��� � 0 8 005 and
��� � � ����� � 0 8 078 which is much

worse than those of ANFIS. Figure 24 shows the predicted values and the prediction errors. Obviously, the over-
parameterization of the AR model causes over-fitting in the training data and large errors in the checking data. To
search for the best AR model in terms of generalization capability, we tried out different AR models with parameter
number being varied from 2 to 104; Figure 25 shows the results where the AR model with the best generalization
capability is obtained when the parameter number is 45. Based on this best AR model, we repeat the generalization
test and Figure 26 shows the results where there is no over-fitting at the price of larger training errors.

It goes without saying that the nonlinear ANFIS outperforms the linear AR model. However, it should be noted
that the identification of the AR model took only a few seconds, while the ANFIS simulation took about 1.5 hours
on a HP Apollo 700 Series workstation. (We did not pay special attention on the optimization of the codes, though.)

Table 4 lists other methods’ generalization capabilities which are measured by using each method to predict
500 points immediately following the training set. Here the non-dimensional error index (NDEI) [24, 39] is defined
as the root mean square error divided by the standard deviation of the target series. (Note that the average relative
variance used in [59, 60] is equal to the square of NDEI.) The remarkable generalization capability of the ANFIS,
we believe, comes from the following facts:

1. The ANFIS can achieve a highly nonlinear mapping as shown in Example 1, 2 and 3, therefore it is superior
to common linear methods in reproducing nonlinear time series.

2. The ANFIS used here has 104 adjustable parameters, much less than those of the cascade-correlation NN
(693, the median size) and back-prop NN (about 540) listed in Table 4.

3. Though without a priori knowledge, the initial parameter settings of ANFIS are intuitively reasonable and it
leads to fast learning that captures the underlying dynamics.

Table 5 lists the results of the more challenging generalization test when
� � 84 (the first six rows) and� � 85 (the last four rows). The results of the first six rows were obtained by iterating the prediction of

� � 6
till

� � 84. ANFIS still outperforms these statistical and connectionist approaches unless a substantially large

23

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x10-3

0 50 100 150 200 250 300 350 400 450 500

epoch number

ro
ot

 m
ea

n
sq

ua
re

s
er

ro
r

Figure 23: Training and checking RMSE curves for ANFIS modeling.

0.5

1

1.5

800 1000 1200 1400 1600

time (sec.)

(a) Desired (solid line) and predicted (dashed line) MG time series

-0.5

0

0.5

800 1000 1200 1400 1600

time (sec.)

(b) Prediction errors

Figure 24: (a) Mackey-Glass time series (solid line) from ��� 718 to 1717 and six-step ahead prediction (dashed
line) by AR model with parameter = 104; (b) prediction errors.

24

0

0.5

1

0 20 40 60 80 100 120

parameter number

N
D

E
I

training (solid line) and checking NDEI (dashed line)

Figure 25: Training (solid line) and checking (dashed line) errors of AR models with different parameter numbers.

0.6

0.8

1

1.2

400 600 800 1000 1200

time (sec.)

(a) Desired (solid line) and predicted (dashed line) MG time series

-0.1

0

0.1

400 600 800 1000 1200

time (sec.)

(b) Prediction errors

Figure 26: Example 3, (a) Mackey-Glass time series (solid line) from � � 364 to 1363 and six-step ahead prediction
(dashed line) by the best AR model (parameter number = 45); (b) prediction errors.

Method Training Cases Non-Dimensional Error Index

ANFIS 500 0.007
AR Model 500 0.19

Cascaded-Correlation NN 500 0.06
Back-Prop NN 500 0.02

6th-order Polynomial 500 0.04
Linear Predictive Method 2000 0.55

Table 4: Generalization result comparisons for
� � 6. (The last four rows are from [39].)

25

Method Training Cases Non-Dimensional Error Index

ANFIS 500 0.036
AR Model 500 0.39

Cascaded-Correlation NN 500 0.32
Back-Prop NN 500 0.05

6th-order Polynomial 500 0.85
Linear Predictive Method 2000 0.60

LRF 500 0.10-0.25
LRF 10000 0.025-0.05
MRH 500 0.05
MRH 10000 0.02

Table 5: Generalization result comparisons for
� � 84 (the first six rows) and 85 (the last four rows). Results for

the first six methods are generated by iterating the solution at
� � 6. Results for localized receptive fields (LRF)

and multi-resolution hierarchies (MRH) are for networks trained for
� � 85. (The last eight rows are from [39].)

amount of training data (i.e., the last row of Table 5) were used instead. Figure 27 illustrates the generalization
test for the ANFIS where the first 500 points were used for the desired outputs while the last 500 are the predicted
outputs for

� � 84.

VI. Concluding Remarks

A. Summary and Extensions of Current work

We have described the architecture of adaptive-network-based fuzzy inference systems (ANFIS) with type-1
and type-3 reasoning mechanisms. By employing a hybrid learning procedure, the proposed architecture can
refine fuzzy if-then rules obtained from human experts to describe the input-output behavior of a complex system.
However, if human expertise is not available, we can still set up intuitively reasonable initial membership functions
and start the learning process to generate a set of fuzzy if-then rules to approximate a desired data set, as shown in
the simulation examples of nonlinear function modeling and chaotic time series prediction.

Due to the high flexibility of adaptive networks, the ANFIS can have a number of variants from what we have
proposed here. For instance, the membership functions can be changed to L-R representation [4] which could
be asymmetric. Furthermore, we can replace Π nodes in layer 2 with the parameterized T-norm [4] and let the
learning rule to decide the best T-norm operator for a specific application. By employing the adaptive network as
a common framework, we have also proposed other adaptive fuzzy models tailored for data classification [50] and
feature extraction [51] purposes.

Another important issue in the training of ANFIS is how to preserve the human-plausible features such as bell-
shaped membership functions, � -completeness [25, 26] or sufficient overlapping between adjacent membership
functions, minimal uncertainty, etc. Though we did not pursue along this direction in this paper, mostly it can be
achieved by maintaining certain constraints and/or modifying the original error measure as explained below.

� To keep bell-shaped membership functions, we need the membership functions to be bell-shaped regardless
of the parameter values. In particular, equation (20) and becomes up-side-down bell-shaped if 0 � � 0; one
easy way to correct this is to replace 0 � with 0 2� in both equations.

� The � -completeness can be maintained by the constrained gradient descent [65]. For instance, suppose
that � � 0 8 5 and the adjacent membership functions are of the form of equation (20) with parameter sets/ . � � 0 � � , � 1 and / . � � 1 � 0 � � 1 � , � � 1

1 . Then the � -completeness is satisfied if , � � . � � , � � 1 * . � � 1 and this can
be ensured throughout the training if the constrained gradient descent is employed.

� Minimal uncertainty refers to the situation that within most region of the input space, there should be a
dominant fuzzy if-then rule to account for the final output, instead of multiple rules with similar firing

26

0.6

0.8

1

1.2

200 400 600 800 1000 1200

time

(a) Desired (solid) and predicted (dashed) time series of ANFIS when P=84

-0.02

0

0.02

200 400 600 800 1000 1200

time

(b) Prediction Errors

Figure 27: Generalization test of ANFIS for
� � 84.

strengths. This minimizes the uncertainty and make the rule set more informative. One way to do this is to
use a modified error measure

� � � � � �
�
� ���

1

�+* 2 � 3 � � � 2 � � ! � (41)

where
�

is the original squared error;
�

is a weighting constant;
�

is the size of training data set;
2 � is the

normalized firing strength of the i-th rule (see equation (23)) and �
����

1 �+*
2 � 3 � � � 2 � � ! is the information

entropy. Since this modified error measure is not based on data fitting alone, the ANFIS thus trained can
also have a potentially better generalization capability. (However, due to this new error measure, the training
should be based on the gradient descent alone.) The improvement of generalization by using an error measure
based both data fitting and weight elimination has been reported in the neural network literature [59, 60].

In this paper, we assume the structure of the ANFIS is fixed and the parameter identification is solved through
the hybrid learning rule. However, to make the whole approach more complete, the structure identification [49, 13]
(which concerns with the selection of an appropriate input-space partition style and the number of membership
functions on each input, etc.) is equally important to the successful applications of ANFIS. Effective partition of
the input space can decrease the rule number and thus increase the speed in both learning and application phases.
Advances on neural networks’ structure identification [6, 27] can shed some lights on this aspect.

B. Applications to Automatic Control and Signal Processing

Fuzzy control is by far the most successful applications of the fuzzy set theory and fuzzy inference systems.
Due to the adaptive capability of ANFIS, its applications to adaptive control and learning control are immediate.
Most of all, it can replace almost any neural networks in control systems to serve the same purposes. For instance,
Narendra’s pioneering work of using neural networks in adaptive control [34] can be all achieved similarly by
ANFIS. Moreover, four of the generic designs (i.e., supervised control, direct inverse control, neural adaptive
control and back-propagation of utility) of neural networks in control, as proposed by Werbos [62, 9], are also
directly applicable schemes for ANFIS. Particularly we have employed a similar method of the back-propagation
through time [35] or unfolding in time to achieve a self-learning fuzzy controller with four rules that can balance an

27

inverted pendulum in an near-optimal manner [12]. It is expected that the advances of neural network techniques
in control can promote those of ANFIS as well, and vice versa.

The active role of neural networks in signal processing [64, 23] also suggests similar applications of ANFIS. The
nonlinearity and structured knowledge representation of ANFIS are the primary advantages over classical linear
approaches in adaptive filtering [8] and adaptive signal processing [63], such as identification, inverse modeling,
predictive coding, adaptive channel equalization, adaptive interference (noise or echo) canceling, etc.

Acknowledgement

The author wish to thank the anonymous reviewers for their valuable comments. The guidance and help of
Professor Lotfi A. Zadeh and other members of the "fuzzy group" at UC Berkeley are also gratefully acknowledged.

Appendix

As suggested by one of the reviewers, to give the readers a concrete idea of the resulting fuzzy inference
systems, it would be better to list the fuzzy if-then rules explicitly. Here we list the final 16 fuzzy if-then rules in
example 4 which predicts the Mackey-Glass chaotic time series. Suppose that the

�
-th input variable is assigned

two linguistic values ���������
	 and ���������	 , then the fuzzy if-then rules after training can be expressed as:������������������������ �����������������������

�����������
18 �� "!$#�%'&$()(1 *,+.- ������� 12 �� "!$#�%/&0(1(2 *,+.- ���2��� 6 �� "!$#�%'&$()(3 *,+.- ���2� �� "!0#�%/&$()(4 3 �5476 + ���2�98 6 �;:=<> 1 ? <@�����������
18 �� "!$#�%'&$()(1 *,+.- ������� 12 �� "!$#�%/&0(1(2 *,+.- ���2��� 6 �� "!$#�%'&$()(3 *,+.- ���2� �� "!A(1&0B
C0D 4 3 �5476 + ���2�98 6 �E:F<> 2 ? <@�����������
18 �� "!$#�%'&$()(1 *,+.- ������� 12 �� "!$#�%/&0(1(2 *,+.- ���2��� 6 �� "!G()&$BHC0D 3 *,+.- ���2� �� "!0#�%/&$()(4 3 �5476 + ���2�98 6 �E:F<> 3 ? <@�����������
18 �� "!$#�%'&$()(1 *,+.- ������� 12 �� "!$#�%/&0(1(2 *,+.- ���2��� 6 �� "!G()&$BHC0D 3 *,+.- ���2� �� "!A(1&0B
C0D 4 3 �5476 + ���2�98 6 �E:=<> 4 ? <@�����������
18 �� "!$#�%'&$()(1 *,+.- ������� 12 �� "!G()&$BHC0D 2 *,+.- ���2��� 6 �� "!0#�%/&$()(3 *,+.- ���2� �� "!0#�%/&$()(4 3 �5476 + ���2�98 6 �E:F<> 5 ? <@�����������
18 �� "!$#�%'&$()(1 *,+.- ������� 12 �� "!G()&$BHC0D 2 *,+.- ���2��� 6 �� "!0#�%/&$()(3 *,+.- ���2� �� "!A(1&0B
C0D 4 3 �5476 + ���2�98 6 �E:=<> 6 ? <@�����������
18 �� "!$#�%'&$()(1 *,+.- ������� 12 �� "!G()&$BHC0D 2 *,+.- ���2��� 6 �� "!A(1&0B
C0D 3 *�+�- ����� �� "!$#�%/&0(1(4 3 �5476 + ���2�98 6 �E:=<> 7 ? <@�����������
18 �� "!$#�%'&$()(1 *,+.- ������� 12 �� "!G()&$BHC0D 2 *,+.- ���2��� 6 �� "!A(1&0B
C0D 3 *�+�- ����� �� "!G()&$BHC0D 4 3 �5476 + ���2�98 6 �1:F<> 8 ? <@�����������
18 �� "!G()&$BHC0D 1 *,+.- ������� 12 �I "!$#�%/&0(1(2 *,+.- ���2��� 6 �� "!0#�%/&$()(3 *,+.- ���2� �� "!0#�%/&$()(4 3 �5476 + ���2�98 6 �E:F<> 9 ? <@�����������
18 �� "!G()&$BHC0D 1 *,+.- ������� 12 �I "!$#�%/&0(1(2 *,+.- ���2��� 6 �� "!0#�%/&$()(3 *,+.- ���2� �� "!A(1&0B
C0D 4 3 �5476 + ���2�98 6 �E:=<> 10 ? <@�����������
18 �� "!G()&$BHC0D 1 *,+.- ������� 12 �I "!$#�%/&0(1(2 *,+.- ���2��� 6 �� "!A(1&0B
C0D 3 *�+�- ����� �� "!$#�%/&0(1(4 3 �5476 + ���2�98 6 �E:=<> 11 ? <@�����������
18 �� "!G()&$BHC0D 1 *,+.- ������� 12 �I "!$#�%/&0(1(2 *,+.- ���2��� 6 �� "!A(1&0B
C0D 3 *�+�- ����� �� "!G()&$BHC0D 4 3 �5476 + ���2�98 6 �1:F<> 12 ? <@�����������
18 �� "!G()&$BHC0D 1 *,+.- ������� 12 �I "!G()&$BHC0D 2 *,+.- ���2�E� 6 �� "!0#�%/&$()(3 *�+�- ����� �� "!$#�%/&0(1(4 3 �5476 + ���2�98 6 �E:=<> 13 ? <@�����������
18 �� "!G()&$BHC0D 1 *,+.- ������� 12 �I "!G()&$BHC0D 2 *,+.- ���2�E� 6 �� "!0#�%/&$()(3 *�+�- ����� �� "!G()&$BHC0D 4 3 �5476 + ���2�98 6 �1:F<> 14 ? <@�����������
18 �� "!G()&$BHC0D 1 *,+.- ������� 12 �I "!G()&$BHC0D 2 *,+.- ���2�E� 6 �� "!A(1&0B
C0D 3 *�+�- ����� �� "!$#�%/&0(1(4 3 �5476 + ���2�98 6 �1:F<> 15 ? <@�����������
18 �� "!G()&$BHC0D 1 *,+.- ������� 12 �I "!G()&$BHC0D 2 *,+.- ���2�E� 6 �� "!A(1&0B
C0D 3 *�+�- ����� �� "!G()&$BHC0D 4 3 �J476 + ���2�.8 6 �E:F<> 16 ? <@

(42)

where KLNMPORQAS"T�U
18 V�W QAS"T$U 12 V�W QGSXT$U 6 V�W QAS"T V�W 1Y and KZ 	 is the

�
-th row of the following consequent parameter

matrix [:

\ :

]^^^^^^^^^^^^^^^^^^^
_

0 ` 2167 0 ` 7233
�

0 ` 0365 0 ` 5433 0 ` 0276
0 ` 2141 0 ` 5704

�
0 ` 4826 1 ` 2452

�
0 ` 3778�

0 ` 0683 0 ` 0022 0 ` 6495 2 ` 7320
�

2 ` 2916�
0 ` 2616 0 ` 9190

�
2 ` 9931 1 ` 9467 1 ` 6555�

0 ` 3293
�

0 ` 8943 1 ` 4290
�

1 ` 6550 2 ` 3735
2 ` 5820

�
2 ` 3109 3 ` 7925

�
5 ` 8068 4 ` 0478

0 ` 8797
�

0 ` 9407 2 ` 2487 0 ` 7759
�

2 ` 0714�
0 ` 8417

�
1 ` 5394

�
1 ` 5329 2 ` 2834 2 ` 4140�

0 ` 6422
�

0 ` 4384 0 ` 9792
�

0 ` 3993 1 ` 5593
1 ` 5534

�
0 ` 0542

�
4 ` 7256 0 ` 7244 2 ` 7350�

0 ` 6864
�

2 ` 2435 0 ` 1585 0 ` 5304 3 ` 5411�
0 ` 3190

�
1 ` 3160 0 ` 9689 1 ` 4887 0 ` 7079�

0 ` 3200
�

0 ` 4654 0 ` 4880
�

0 ` 0559 0 ` 9622
4 ` 0220

�
3 ` 8886 1 ` 0547

�
0 ` 7427

�
0 ` 4464

0 ` 3338
�

0 ` 3306
�

0 ` 5961 1 ` 1220 0 ` 3529�
0 ` 5572 0 ` 9190

�
0 ` 8745 2 ` 1899

�
0 ` 9497

acbbbbbbbbbbbbbbbbbbb
d

(43)

The linguistic labels ������H�
	 and ������e�f	 (
�
=1 to 4) are defined by the bell membership function (with

different parameters g , h and Z): iGj SkQ V M 1

1 l OmSonIprqs V 2 Y5tEu (44)

These membership functions are shown in Figure 21. The following table lists the linguistic labels and the
corresponding consequent parameters in equation (44):

28

References

[1] K. J. Aström and B. Wittenmark. Computer Controller Systems: Theory and Design. Prentice-Hall, 1984.

[2] S. M. Botros and C. G. Atkeson. Generalization properties of radial basis functions. In D. S. Touretzky, editor,
Advances in Neural Information Processing Systems III, pages 707–713. Morgan Kaufmann Publishers, San
Mateo, CA, 1991.

[3] S. Chen, C. F. N. Cowan, and P. M. Grant. Orthogonal least squares learning algorithm for radial basis
function networks. IEEE Trans. on Neural Networks, 2(2):302–309, March 1991.

[4] D. Dubois and H. Prade. Fuzzy Sets and Systems: Theory and Applications. Academic press, New York,
1980.

[5] S. E. Fahlman. Faster-learning variations on back-propagation: an empirical study. In D. Touretzky, G. Hinton,
and T. Sejnowski, editors, Proc. of the 1988 Connectionist Models Summer School, pages 38–51, Carnegic
Mellon University, 1988.

[6] S. E. Fahlman and C. Lebiere. The cascade-correlation learning architecture. In D. S. Touretzky, G. Hinton,
and T. Sejnowski, editors, Advances in Neural Information Processing Systems II. Morgan Kaufmann, 1990.

[7] G. C. Goodwin and K. S. Sin. Adaptive filtering prediction and control. Prentice-Hall, ENglewood Cliffs,
N.J., 1984.

[8] S. S. Haykin. Adaptive filter theory. Prentice Hall, Englewood Cliffs, NJ, 2nd edition, 1991.

[9] W. T. Miller III, R. S. Sutton, and P. J. Werbos, editors. Neural Networks for Control. Massachusetts Institute
of Technology, 1990.

[10] J.-S. Roger Jang. Fuzzy modeling using generalized neural networks and Kalman filter algorithm. In Proc.
of the Ninth National Conference on Artificial Intelligence (AAAI-91), pages 762–767, July 1991.

[11] J.-S. Roger Jang. Rule extraction using generalized neural networks. In Proc. of the 4th IFSA World Congress,
pages 82–86 (in the Volume for Artificial Intelligence), July 1991.

[12] J.-S. Roger Jang. Self-learning fuzzy controller based on temporal back-propagation. IEEE Trans. on Neural
Networks, 3(5):714–723, September 1992.

[13] J.-S. Roger Jang. Structure determination in fuzzy modeling: a fuzzy CART approach. In Proc. of IEEE
international conference on fuzzy systems, Orlando, June 1994. (Submitted).

[14] J.-S. Roger Jang and C.-T. Sun. Functional equivalence between radial basis function networks and fuzzy
inference systems. IEEE Trans. on Neural Networks, 4(1):156–159, January 1993.

� g h Z
������H� 1 0.1790 2.0456 0.4798�������� 1 0.1584 2.0103 1.4975������H� 2 0.2410 1.9533 0.2960�������� 2 0.2923 1.9178 1.7824������H� 3 0.3798 2.1490 0.6599�������� 3 0.4884 1.8967 1.6465������H� 4 0.2815 2.0170 0.3341�������� 4 0.1616 2.0165 1.4727

Table 6: Table of premise parameters in example 4.

29

[15] R. D. Jones, Y. C. Lee, C. W. Barnes, G. W. Flake, K. Lee, and P. S. Lewis. Function approximation and time
series prediction with neural networks. In Proc. of IEEE International Joint Conference on Neural Networks,
pages I–649–665, 1990.

[16] V. Kadirkamanathan, M. Niranjan, and F. Fallside. Sequential adaptation of radial basis function neural
networks. In D. S. Touretzky, editor, Advances in Neural Information Processing Systems III, pages 721–727.
Morgan Kaufmann Publishers, San Mateo, CA, 1991.

[17] R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of Basic Engineering,
pages 35–45, March 1960.

[18] A. Kandel. Fuzzy expert systems. Addison-Wesley, 1988.

[19] A. Kandel, editor. Fuzzy expert systems. CRC Press, Boca Raton, FL, 1992.

[20] L. V. Kantorovich and G. P. Akilov. Functional analysis. Pergamon, Oxford, 2nd edition, 1982.

[21] M. S. Klassen and Y.-H. Pao. Characteristics of the functional-link net: A higher order delta rule net. In IEEE
Proc. of the International Conference on Neural Networks, San Diego, June 1988.

[22] T. Kondo. Revised GMDH algorithm estimating degree of the complete polynomial. Tran. of the Society of
Instrument and Control Engineers, 22(9):928–934, 1986. (Japanese).

[23] B. Kosko. Neural networks for signal processing. Prentice Hall, Englewood Ciffs, NJ, 1991.

[24] A. S. Lapedes and R. Farber. Nonlinear signal processing using neural networks: prediction and system
modeling. Technical Report LA-UR-87-2662, Los Alamos National Laboratory, Los Alamos, New Mexico
87545, 1987.

[25] C.-C. Lee. Fuzzy logic in control systems: fuzzy logic controller-part 1. IEEE Trans. on Systems, Man, and
Cybernetics, 20(2):404–418, 1990.

[26] C.-C. Lee. Fuzzy logic in control systems: fuzzy logic controller-part 2. IEEE Trans. on Systems, Man, and
Cybernetics, 20(2):419–435, 1990.

[27] T.-C. Lee. Structure level adaptation for artificial neural networks. Kluwer Academic Publishers, 1991.

[28] L. Ljung. System identification: theory for the user. Prentice-Hall, Englewood Cliffs, N.J., 1987.

[29] M. C. Mackey and L. Glass. Oscillation and chaos in physiological control systems. Science, 197:287–289,
July 1977.

[30] J. Moody. Fast learning in multi-resolution hierarchies. In D. S. Touretzky, editor, Advances in Neural
Information Processing Systems I, chapter 1, pages 29–39. Morgan Kaufmann, San Mateo, CA, 1989.

[31] J. Moody and C. Darken. Learning with localized receptive fields. In D. Touretzky, G. Hinton, and T. Se-
jnowski, editors, Proc. of the 1988 Connectionist Models Summer School. Carnegie Mellon University, Morgan
Kaufmann Publishers, 1988.

[32] J. Moody and C. Darken. Fast learning in networks of locally-tuned processing units. Neural Computation,
1:281–294, 1989.

[33] M. T. Musavi, W. Ahmed, K. H. Chan, K. B. Faris, and D. M. Hummels. On the training of radial basis
function classifiers. Neural Networks, 5(4):595–603, 1992.

[34] K. S. Narendra and K. Parthsarathy. Identification and control of dynamical systems using neural networks.
IEEE Trans. on Neural Networks, 1(1):4–27, 1990.

[35] D. H. Nguyen and B. Widrow. Neural networks for self-learning control systems. IEEE Control Systems
Magazine, pages 18–23, April 1990.

30

[36] Y.-H. Pao. Adaptive Pattern Recognition and Neural Networks, chapter 8, pages 197–222. Addison-Wesley
Publishing Company, Inc., 1989.

[37] D. B. Parker. Optimal algorithms for adaptive networks: Second order back propagation, second order direct
propagation, and second order Hebbian learning. In Proc. of IEEE International Conference on Neural
Networks, pages 593–600, 1987.

[38] W. Pedrycz. Fuzzy control and fuzzy systems. Wiley, New York, 1989.

[39] III R. S. Crowder ˙Predicting the Mackey-Glass timeseries with cascade-correlation learning. In D. Touretzky,
G. Hinton, and T. Sejnowski, editors, Proc. of the 1990 Connectionist Models Summer School, pages 117–123,
Carnegic Mellon University, 1990.

[40] H. L. Royden. Real analysis. Macmillan, New York, 2nd edition, 1968.

[41] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation.
In D. E. Rumelhart and James L. McClelland, editors, Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, volum 1, chapter 8, pages 318–362. The MIT Press, 1986.

[42] T. D. Sanger. A tree-structured adaptive network for function approximate in high-dimensional spaces. IEEE
Trans. on Neural Networks, 2(2):285–293, March 1991.

[43] S. Shah, F. Palmieri, and M. Datum. Optimal filtering algorithms for fast learning in feedforward neural
networks. Neural Networks, 5(5):779–787, 1992.

[44] S. Shar and F. Palmieri. MEKA-a fast, local algorithm for training feedforward neural networks. In Proc. of
International Joint Conference on Neural Networks, pages III 41–46, 1990.

[45] S. Singhal and L. Wu. Training multilayer perceptrons with the extended kalman algorithm. In David S.
Touretzky, editor, Advances in neural information processing systems I, pages 133–140. Morgan Kaufmann
Publishers, 1989.

[46] S. M. Smith and D. J. Comer. Automated calibration of a fuzzy logic controller using a cell state space
algorithm. IEEE Control Systems Magazine, 11(5):18–28, August 1991.

[47] P. Strobach. Linear prediction theory: a mathematical basis for adaptive systems. Springer-Verlag, 1990.

[48] M. Sugeno, editor. Industrial applications of fuzzy control. Elsevier Science Pub. Co., 1985.

[49] M. Sugeno and G. T. Kang. Structure identification of fuzzy model. Fuzzy Sets and Systems, 28:15–33, 1988.

[50] C.-T Sun and J.-S. Roger Jang. Adaptive network based fuzzy classification. In Proc. of the Japan-U.S.A.
Symposium on Flexible Automation, July 1992.

[51] C.-T. Sun, J.-S. Roger Jang, and C.-Y. Fu. Neural network analysis of plasma spectra. In Proc. of the
International Conference on Artificial Neural Networks, Amsterdam, September 1993.

[52] H. Takagi and I. Hayashi. NN-driven fuzzy reasoning. International Journal of Approximate Reasoning,
5(3):191–212, 1991.

[53] T. Takagi and M. Sugeno. Derivation of fuzzy control rules from human operator’s control actions. Proc. of
the IFAC Symp. on Fuzzy Information, Knowledge Representation and Decision Analysis, pages 55–60, July
1983.

[54] T. Takagi and M. Sugeno. Fuzzy identification of systems and its applications to modeling and control. IEEE
Trans. on Systems, Man, and Cybernetics, 15:116–132, 1985.

[55] Y. Tsukamoto. An approach to fuzzy reasoning method. In Madan M. Gupta, Rammohan K. Ragade, and
Ronald R. Yager, editors, Advances in Fuzzy Set Theory and Applications, pages 137–149. North-Holland,
Amsterdam, 1979.

31

[56] L.-X. Wang. Fuzzy systems are universal approximators. In Proc. of the IEEE International Conference on
Fuzzy Systems, San Diego, March 1992.

[57] L.-X. Wang and J. M. Mendel. Fuzzy basis function, universal approximation, and orthogonal least squares
learning. IEEE Trans. on Neural Networks, 3(5):807–814, September 1992.

[58] R. L. Watrous. Learning algorithms for connectionist network: applied gradient methods of nonlinear
optimization. In Proc. of IEEE International Conference on Neural Networks, pages 619–627, 1991.

[59] A. A. Weigend, D. E. Rumelhart, and B. A. Huberman. Back-propagation, weight-elimination and time series
prediction. In D. Touretzky, G. Hinton, and T. Sejnowski, editors, Proc. of the 1990 Connectionist Models
Summer School, pages 105–116, Carnegic Mellon University, 1990.

[60] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman. Generalization by weight-elimination with application
to forecasting. In D. S. Touretzky, editor, Advances in Neural Information Processing Systems III, pages
875–882. Morgan Kaufmann, San Mateo, CA, 1991.

[61] P. Werbos. Beyond regression: New tools for prediction and analysis in the behavioral sciences. PhD thesis,
Harvard University, 1974.

[62] P. J. Werbos. An overview of neural networks for control. IEEE Control Systems Magazine, 11(1):40–41,
January 1991.

[63] B. Widrow and D. Stearns. Adaptive Signal Processing. Prentice-Hall, Englewood Cliffs, N.J., 1985.

[64] B. Widrow and R. Winter. Neural nets for adaptive filtering and adaptive pattern recognition. IEEE Computer,
pages 25–39, March 1988.

[65] D. A. Wismer and R. Chattergy. Introduction to nonlinear optimization: a problem solving approach,
chapter 6, pages 139–162. North-Holland Publishing Company, 1978.

[66] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

[67] L. A. Zadeh. Outline of a new approach to the analysis of complex systems and decision processes. IEEE
Trans. on Systems, Man, and Cybernetics, 3(1):28–44, January 1973.

32

