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Abstract – In  this report, we discuss results of modelling and forecasting nonstationary financial time series 
using a combination of the maximal overlap discreet wavelet transform (MODWT) and fuzzy logic. A financial 
time series is decomposed into an over complete, shift invariant wavelet representation. A fuzzy-rule base is 
created  for  each  individual  wavelet  sub-series  to  predict  future  values.  To form the  aggregate  forecast,  the 
individual wavelet sub-series forecasts are recombined utilizing the linear reconstruction property of the wavelet 
multiresolution analysis (MRA). Results are presented for IBM, NASDAQ and S&P 500 daily (adjusted) close 
values.

I. INTRODUCTION

The successful application of modern modelling techniques like neural networks and fuzzy logic to 
financial time series requires a certain uniformity (stationarity) of the data. Financial time series data is 
inherently nonstationary and may be a superposition of many sources exhibiting different dynamics. 
Neural networks (employing nonlinear autoregressions) and fuzzy logic models (employing fuzzy-rule 
bases) can be termed as global approximators where only one model is used to characterize an entire 
process. Therefore, such techniques usually give best results for stationary time series.
Recently,  there has been an increased interest in multiresolution decomposition techniques like the 
wavelet transform for elucidating complex relationships in nonstationary financial time series  . The 
wavelet transform can produce a good local representation of a signal in both time and frequency 
domain and is not restrained by the assumption of stationarity . Moreover, the wavelet approach has 
formalized old notions of decomposing a financial time series into trend, seasonal and business cycle 
components .  Motivated by the spatial frequency resolution property of the wavelet transform, several 
hybrid schemes (local models) have been developed, for example  , which combine wavelet analysis 
with machine learning approaches like neural networks for time series prediction.
In this report, we present results of predicting financial time series with a fuzzy-wavelet hybrid system 
that  incorporates  multiscale  wavelet  decompositions  into  a  set  of  fuzzy-rule  bases.  The  system 
employs a shift invariant wavelet transform called the maximal overlap discrete wavelet transform 
(MODWT)  .  Essentially,  the  so-called  à trous filtering scheme   is  applied  to  generate  MODWT 
decompositions  of  a  financial  time  series.  A  fuzzy-rule  base  is  created  to  predict  each  wavelet 
decomposition separately. To generate a global forecast, the prediction results of individual wavelet 
decompositions  are  combined  directly  using  the  linear  reconstruction  property  of  the  wavelet 
multiresolution analysis (MRA). 
Results are presented for three sets of data: (1) IBM daily prices from January 1982 to January 2004, 
(2) NASDAQ daily index values from October 1984 to June 2004, and (3) S&P 500 daily index values 
from January 1984 to June 2004. 

II. WAVELET BASED PRE-PROCESSING

A. Discrete Wavelet Transform (DWT) 
The  discrete  wavelet  transform (DWT)  is  a  mathematical  tool  that  projects  a  time  series  onto  a 
collection of orthonormal basis functions (wavelets) to produce a set of wavelet coefficients. These 
coefficients capture information from the time series at different frequencies at distinct times. For a 
function f defined on the entire real line, a suitably chosen mother wavelet function ψ can be used to 
expand f as,
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where  the  functions  ψ (2 jt  -  k)  are  all  orthogonal  to  one  another.  The  coefficient  wjk conveys 
information about the behaviour of the function  f concentrating on effects of scale around  2-j 

near time k ✕ 2-j. 
The DWT can effectively compress a wide range of signals – a large proportion of DWT coefficients 
can actually be set to zero without appreciable loss of information. It can deal well with heterogeneous 
and transient behaviour that makes it so attractive for financial time series analysis.  However, one 
problem associated with the application of the DWT for time series analysis is that it suffers from a 
lack of translation invariance. This means that circularly shifting a time series will not necessarily shift 
its DWT coefficients in a similar manner.

B. Maximal Overlap DWT (MODWT) and à trous Filtering
This problem can be tackled by means of a highly redundant non-orthogonal transform called the 
maximal  overlap  discrete  wavelet  transform  (MODWT)  .  For  a  redundant  transform  like  the 
MODWT, an N samples input time series will have an N samples resolution scale for each resolution 
level. Therefore, the features of wavelet coefficients in a multiresolution analysis (MRA) will be lined 
up with the original time series in a meaningful way. 

For a time series X with arbitrary sample size N, the jth level MODWT wavelet ( jW~ ) and scaling ( jV~ ) 
coefficients are defined as,
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For a time series X with N samples, the MODWT yields an additive decomposition or MRA given by,
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According to Equation (3), at a scale j, we obtain a set of coefficients {Dj} each with the same number 
of samples (N) as in the original signal (X). These are called wavelet “details” and they capture local 
fluctuations over the whole period of a time series at  each scale.  The set  of  values  SJ0 provide a 
“smooth” or overall  “trend” of the original signal.  Adding  Dj to  SJ0,  for  j  = 1, 2, …, J0, gives an 
increasingly more accurate approximation of the original signal. This additive form of reconstruction 
allows us to predict each wavelet sub-series (Dj,  SJ0) separately and add the individual predictions to 
generate an aggregate forecast. 
Since our intention is to make one-step-head predictions, we should perform the MODWT in such a 
way that the wavelet coefficients (for each level) at  time point  n should not be influenced by the 
behaviour of the time series beyond point  n. That is we must perform the MODWT incrementally 
where a wavelet coefficient at a position n is calculated from the signal samples at positions less than 
or equal to n, but never larger. This will give us the flexibility of dividing the wavelet coefficients for 
training and testing and making one-step-ahead predictions in the same way as we would for the 
original signal. To accomplish this we make use of the time-based à trous filtering scheme proposed in 
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, which is briefly described as follows. Consider a signal X(1), X(2), …, X(n),  where n is the present 
time point and perform the following steps: 

1) For index  k sufficiently large, carry out the MODWT transform (2), (3), and (4) on {X(1),  
X(2), …, X(n)}.

2) Retain the coefficient values as well as the smooth values for the kth time point only:  D1(k),  
D2(k), …, S5(k). The summation of these values gives X(k).

3) If k < n, set k = k+1 and go to Step 1.
This process produces an additive decomposition of the signal X(k), X(k+1), …, X(n), which is similar 
to the à trous wavelet transform decomposition on X(1), X(2), …, X(n). The above algorithm is further 
illustrated in Fig. 1 where we have shown a level-5 decomposition.

1 2 . . k D1 (k) D2 (k) D3 (k) D4 (k) D5 (k) S5 (k)

1 2 . . k D1 (k+1) D2 (k+1) D3 (k+1) D4 (k+1) D5 (k+1) S5 (k+1)

1 2 3 . . D1 (k+2) D2 (k+2) D3 (k+2) D4 (k+2) D5 (k+2) S5 (k+2)

1 2 3 4 . . D1 (k+3) D2 (k+3) D3 (k+3) D4 (k+3) D5 (k+3) S5 (k+3)

. . . . . . .

. . . . . . .

. . . . . . .

Fig. 1. Procedure for preparing data for one-step-ahead predictions using a fuzzy-wavelet hybrid model. Each time a segment 
of the time series is transformed using the MODWT, only the last coefficient is retained. 

III. HYBRID FUZZY-WAVELET SCHEME FOR TIME SERIES PREDICTION

Fig. 2 shows the proposed hybrid fuzzy-wavelet scheme for time series prediction. Given the time 
series X(n), n = 1, …, N, our aim is to predict the lth sample ahead, X(N+l), of the series. That is l = 1 
for single step prediction. This scheme basically involves three stages. In the first stage, the time series 
is decomposed into different scales using the MODWT. In the second stage, each scale is predicted by 
a  separate  fuzzy  logic  model  and  in  the  third  stage  the  individual  predictions  at  each  scale  are 
combined to generate an aggregate forecast.
The time-based à trous filtering scheme presented in Fig. 1, handles the temporal aspect of the data 
well to facilitate time series prediction. As an example, consider a financial index like the IBM prices 
with 109 data samples, on which we wish to carry out a level-3 time-based à trous transform. We can 
do this by implementing the scheme described in Fig. 1 by starting off with 10 samples (k = 10). That 
is, we simply carry out a level-3 MODWT on values  X(1) to X(10). The last values of the wavelet 
coefficients at time-point t = 10 are kept because they are the most useful ones for prediction. Then we 
repeat the same procedure at time-point t = 11 (carry out a level-3 MODWT on values X(1) to X(11)  
and keep coefficients at time-point t = 11) and so on until we reach 109 (the total number of samples 
in the original data). In this manner, we will have wavelet decompositions for the time series from t = 
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10 to t = 109. The total number of samples in these decompositions will be 100, which is 9 less than 
the original time series since we chose k = 10 to start our à trous filtering. 
                                                                   

Fig. 2. Overview of the wavelet/fuzzy multiresolution forecasting system. D1, …D5 are wavelet coefficients, S5 is the signal 
“smooth” or “trend”.

Fig. 3 shows the IBM prices from t = 10 to t = 109 (a total of 100 samples), and the corresponding 
(MODWT) wavelet transform computed by the above method.  As the wavelet level increases, the 
corresponding coefficients become smoother. We will show in the next section that the ability of fuzzy 
models to capture dynamical behaviour varies with the wavelet resolution level.

Fig. 3. Illustration of the à trous wavelet decomposition of IBM closing price series. From top to bottom: IBM closing price, 
D1, D2, D3 and the wavelet “smooth”.  

In  the  second stage,  the  wavelet  decompositions  are partitioned into training and testing sets  and 
separate  fuzzy  models  are  built  for  each,  over  the  training  set.  Therefore,  a  level-J wavelet 
decomposition results in J+1 fuzzy models:
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We use the subtractive clustering method proposed by Chiu  to build individual fuzzy-rule bases for 
the wavelet decompositions. A cluster radius of 0.5 is used for all predictions. A first-order (Takagi-
Sugeno-Kang) TSK fuzzy inference system (FIS) is obtained on the training data, using a one-pass 
MatlabTM function without iterative optimisation. The FIS is then used on the test data for single step 
prediction. In the third stage, single step predictions for the wavelet decompositions are combined to 
give the next step forecast for time series X:

    ...   
1111 211 ++++

++++=+ tttt JJt SDDDX (6)

IV. SIMULATIONS AND PERFORMANCES

Analysis and simulations involved the daily (adjusted) closing value of three financial instruments: (1) 
IBM prices from January 1982 to January 2004, (2) NASDAQ index from October 1984 to June 2004, 
and (3) S&P 500 index from January 1984 to June 2004. To undertake a meaningful analysis, the IBM 
data was subdivided into 5 time series, each comprising roughly 5 years of data. Similarly NASDAQ 
and S&P 500 data was also subdivided into 4 time series, again each comprising roughly 5 years of 
data. This resulted in a total of 13 time series (each of length equal to around five years) to be analysed 
– 5 for IBM and 4 each for NASDAQ and S&P 500. For each of the 13 time series, a  training to 
testing ratio of 80 to 20 per cent was employed (see TABLE I for more details). Fig. 4 shows one of the 
13 time series analysed: the IBM daily close prices from January 2, 1987 to December 31, 1991. 

Fig. 4. Closing price for IBM from January 2, 1987 to December 31, 1991: a total of 1264 data samples.

We examined the approach of forecasting each wavelet derived coefficient series individually and then 
recombining the marginal forecasts. The objective was to perform one day ahead forecasting of the 
closing value for each time series and comparing the predictions with the target (original) series using 
the root mean squared error (RMSE) statistic, Ei (7). 
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Each of the 13 time series was decomposed into five wavelet resolution levels using à trous filtering. 
The fuzzy system was trained separately on each wavelet sub-series (resolution) to generate one-step-
ahead forecasts.  Fig. 5 shows the one-step ahead predictions for each of the five wavelet coefficient 
series ({D1}, {D2}, {D3}, {D4}, {D5}) and the “smooth” ({S5}) of the IBM prices of Fig. 4 over a 
testing set comprising 252 days. 
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We observe that the ability of the fuzzy model to capture dynamical behaviour varies with the wavelet 
resolution level. The prediction is inaccurate at lower scales for which wavelet coefficients are noisy 
and irregular (top two series in Fig. 5). On the other hand, for higher scales, which are much more 
smooth and systematic, the prediction proceeds quite well (last four series in Fig. 5). 

Fig. 5. From top to bottom: one step ahead predictions for the five wavelet  coefficient series  D1, D2, D3, D4, D5  and the 
smooth series  S5,  over  a 252 days  period on the testing set.  The blue line is the target  series while  the red line is the 
prediction.

Fig. 6a shows the aggregate prediction (sum of the individual wavelet predictions of Fig. 5) for the 
IBM series over a test set of 252 samples. Fig. 6b shows the same prediction without the noisiest 
wavelet component (D1: the first series in Fig. 5). It is clear that the fit to the data is much better in 
Fig. 6b where the noise component has been removed from the signal. 

Fig. 6a. Aggregate prediction of IBM prices without de-
noising over a 252 days period on the testing set.  The 
blue  line  is  the  target  series  while  the  red  line  is  the 
prediction. 

Fig. 6b. Aggregate prediction of IBM prices with de-
noising over a 252 days period on the testing set. The 
blue line is the target series while the red line is the 
prediction.
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We thus conclude that noise in the signal contributes significantly to the RMSE of prediction and 
systematic removal  of noise improves the quality of the overall  forecast.  In  TABLE I, we present a 
summary of the results for all the 13 time series that were analysed using the above methodology. The 
last two columns of TABLE I show the RMSE without and with wavelet de-noising respectively.  We 
observe that  the RMSE drops significantly for  all  the 13 time  series when we exclude the noisy 
component (D1) for training and testing the fuzzy prediction model. 
 TABLE I: RMSE for all the 13 time series with and without wavelet de-noising

Data
Time 
Series 

No.

Period
Samples Train Test

RMSE 
without 

De-
noising

RMSE 
with De-
noisingFrom To

IBM 1 1 04-Jan-82 31-Dec-86 1264 1012 252 0.11 0.08

IBM 2 2 02-Jan-87 31-Dec-91 1264 1012 252 0.22 0.17

IBM 3 3 02-Jan-92 31-Dec-96 1265 1012 253 0.56 0.44

IBM 4 4 02-Jan-97 31-Dec-01 1257 1012 245 2.30 1.80

IBM 5 5 02-Jan-02 12-Jan-04 511 408 103 1.01 0.79

Nasdaq 1 6 11-Oct-84 30-Dec-88 1067 853 214 2.05 1.60

Nasdaq 2 7 03-Jan-89 31-Dec-93 1265 1012 253 4.97 3.88

Nasdaq 3 8 03-Jan-94 31-Dec-98 1263 1012 251 29.35 22.99

Nasdaq 4 9 04-Jan-99 30-Jun-04 1380 1104 276 22.87 17.90

S&P 1 10 03-Jan-84 30-Dec-88 1265 1012 253 2.85 2.22

S&P 2 11 03-Jan-89 31-Dec-93 1265 1012 253 2.43 1.90

S&P 3 12 03-Jan-94 31-Dec-98 1263 1012 251 13.66 10.71

S&P 4 13 04-Jan-99 30-Jun-04 1379 1103 276 8.33 6.51

V. AFTERWORD 

In  this  report  we  have  presented  a  method  that  combines  shift  invariant  wavelet  transform pre-
processing  with  fuzzy  logic  for  financial  time  series  prediction.  The  results  show  significant 
advantages  of  wavelet  pre-processing  for  time  series  analysis  and  prediction.  Wavelets  provide  a 
formal  method  to  de-noise,  de-seasonalize,  de-trend,  and  break  down a  complex  time  series  into 
simpler units to facilitate accurate prediction.  A significant improvement in the RMSE statistic is 
observed when the so-called noise component is removed from the signal (TABLE I). However, this is 
just one aspect or benefit of using wavelet pre-processing for time series prediction. Since the wavelet 
transform has  the  capability  of  decomposing  a  time  series  into  the  trend,  seasonal  and  irregular 
components, appropriate prediction techniques can be applied to each component to gain an overall 
efficiency in  forecast.  Here  we  demonstrated the  usefulness  of  a  hybrid  fuzzy-wavelet  prediction 
scheme. But there are other methods to be explored, for example, fitting an autoregressive model to 
the  “smooth”  or  “trend”  component,  a  SARIMA  model  to  the  seasonal  component,  and  a 
bootstrapping model to the noise component. 
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