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THE 10 REASONS
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ABSTRACT

The rate of failure in quantitative finance is high, and particularly so in financial machine
learning. The few managers who succeed amass a large amount of assets, and deliver
consistently exceptional performance to their investors. However, that is a rare outcome, for
reasons that will become apparent in this article. Over the past two decades, | have seen many
faces come and go, firms started and shut down. In my experience, there are ten critical mistakes
underlying most of those failures.

This paper is partly based on the book Advances in Financial Machine Learning (Wiley, 2018),
available at https://goo.gl/w6gMdq
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For almost a century, economics and finance have relied almost exclusively on the econometric
toolkit to perform empirical analyses. The essential tool of econometrics is multivariate linear
regression, an 18th-century technology that was already mastered by Gauss in 1794 (Stigler
[1981]). Standard econometric models do not learn. It is hard to believe that something as
complex as 21st-century finance could be grasped by something as simple as inverting a
covariance matrix.

Every empirical science must build theories based on observation. If the statistical toolbox used
to model these observations is linear regression, the researcher will fail to recognize the
complexity of the data, and the theories will be awfully simplistic, useless. Econometrics may be
a primary reason economics and finance have not experienced meaningful progress over the past
70 years (Calkin and Lépez de Prado [2014a, 2014b]).

For centuries, medieval astronomers made observations and developed theories about celestial
mechanics. These theories never considered non-circular orbits, because they were deemed
unholy and beneath God’s plan. The prediction errors were SO gross, that ever more complex
theories had to be devised to account for them. It was not until Kepler had the temerity to
consider non-circular (elliptical) orbits that all of the sudden a much simpler general model was
able to predict the position of the planets with astonishing accuracy. What if astronomers had
never considered non-circular orbits? Well ... what if economists finally started to consider non-
linear functions? Where is our Kepler? Finance does not have a Principia because no Kepler
means no Newton.

In recent years, quantitative fund managers have experimented and succeeded with the use of
machine learning (ML) methods. An ML algorithm learns patterns in a high-dimensional space
without being specifically directed. A common misconception is that ML methods are black
boxes. This is not necessarily true. When correctly used, ML models do replace theory, they
guide it. Once we understand what features are predictive of a phenomenon, we can build a
theoretical explanation, which can be tested on an independent dataset. Students of economics
and finance would do well enrolling in ML courses, rather than econometrics. Econometrics may
be good enough to succeed in financial academia (for now), but succeeding in business requires
ML.

At the same time, ML is no panacea. The flexibility and power of ML techniques have a dark
side. When misused, ML algorithms will confuse statistical flukes with patterns. This fact,
combined with the low signal-to-noise ratio that characterizes finance, all but ensures that
careless users will produce false discoveries at an ever-greater speed. The goal of this article is to
expose some of the most common errors made by ML experts when they apply their techniques
on financial datasets. The following sections summarize those pitfalls (listed in Exhibit 1), and
propose solutions. The interested reader may find a more detailed explanation in Lépez de Prado
[2018].

PITFALL #1: THE SISYPHUS PARADIGM

Discretionary portfolio managers (PMs) make investment decisions that do not follow a
particular theory or rationale (if there were one, they would be systematic PMs). They consume
raw news and analyses, but mostly rely on their judgment or intuition. They may rationalize



those decisions based on some story, but there is always a story for every decision. Because
nobody fully understands the logic behind their bets, investment firms ask them to work
independently from one another, in silos, to ensure diversification. If you have ever attended a
meeting of discretionary PMs, you probably noticed how long and aimless they can be. Each
attendee seems obsessed about one particular piece of anecdotal information, and giant
argumentative leaps are made without fact-based, empirical evidence. This does not mean that
discretionary PMs cannot be successful. On the contrary, a few of them are. The point is, they
cannot naturally work as a team. Bring 50 discretionary PMs together, and they will influence
one another until eventually you are paying 50 salaries for the work of one. Thus it makes sense
for them to work in silos so they interact as little as possible.

Wherever | have seen that formula applied to quantitative or ML projects, it has led to disaster.
The boardroom’s mentality is, let us do with quants what has worked with discretionary PMs.
Let us hire 50 PhDs and demand that each of them produce an investment strategy within six
months. This approach tends to backfire, because each PhD will frantically search for investment
opportunities and eventually settle for (1) a false positive that looks great in an overfit backtest or
(2) standard factor investing, which is an overcrowded strategy with a low Sharpe ratio, but at
least has academic support. Both outcomes will disappoint the investment board, and the project
will be cancelled. Even if 5 of those PhDs identified a true discovery, the profits would not
suffice to cover for the expenses of 50, so those 5 will relocate somewhere else, searching for a
proper reward.

SOLUTION #1: THE META-STRATEGY PARADIGM

If you have been asked to develop ML strategies on your own, the odds are stacked against you.
It takes almost as much effort to produce one true investment strategy as to produce a hundred,
and the complexities are overwhelming: data curation and processing, HPC infrastructure,
software development, feature analysis, execution simulators, backtesting, etc. Even if the firm
provides you with shared services in those areas, you are like a worker at a BMW factory who
has been asked to build an entire car by using all the workshops around you. One week you need
to be a master welder, another week an electrician, another week a mechanical engineer, another
week a painter... You will try, fail, and circle back to welding. How does that make sense?

Every successful quantitative firm | am aware of applies the meta-strategy paradigm (LOpez de
Prado [2014]). Tasks of the assembly line are clearly divided into subtasks. Quality is
independently measured and monitored for each subtask. The role of each quant is to specialize
in a particular task, to become the best there is at it, while having a holistic view of the entire
process. Teamwork yields discoveries at a predictable rate, with no reliance on lucky strikes. No
particular individual is responsible for these discoveries, as they are the outcome of team efforts
where everyone contributes. Of course, setting up these financial laboratories takes time, and
requires people who know what they are doing and have done it before. But what do you think
has a higher chance of success, this proven paradigm of organized collaboration or the Sisyphean
alternative of having every single quant rolling their immense boulder up the mountain?



PITFALL #2: RESEARCH THROUGH BACKTESTING

One of the most pervasive mistakes in financial research is to take some data, run it through an
ML algorithm, backtest the predictions, and repeat the sequence until a nice-looking backtest
shows up. Academic journals are filled with such pseudo-discoveries, and even large hedge
funds constantly fall into this trap. It does not matter if the backtest is a walk-forward out-of-
sample. The fact that we are repeating a test over and over on the same data will likely lead to a
false discovery. This methodological error is so notorious among statisticians that they consider
it scientific fraud, and the American Statistical Association warns against it in its ethical
guidelines (American Statistical Association [2016], Discussion #4). It typically takes about 20
such iterations to discover a (false) investment strategy subject to the standard significance level
(false positive rate) of 5%.

SOLUTION #2: FEATURE IMPORTANCE ANALYSIS

Suppose that you are given a pair of matrices (X, y), that respectively contain features and labels
for a particular financial instrument. We can fit a classifier on (X,y) and evaluate the
generalization error through cross-validation. Suppose that we achieve good performance. The
next natural question is to try to understand what features contributed to that performance.
Maybe we could add some features that strengthen the signal responsible for the classifier’s
predictive power. Maybe we could eliminate some of the features that are only adding noise to
the system. Most critical, understanding feature importance opens up the proverbial black box.
We can gain insight into the patterns identified by the classifier if we understand what source of
information is indispensable to it. This is one of the reasons why the black box mantra is
somewhat overplayed by the ML skeptics. Yes, the algorithm has learned without us directing
the process (that is the whole point of ML!) in a black box, but that does not mean that we cannot
(or should not) take a look at what the algorithm has found. Hunters do not blindly eat everything
their smart dogs retrieve for them, do they? Once we have found what features are important, we
can learn more by conducting a number of experiments. Are these features important all the time,
or only in some specific environments? What triggers a change in importance over time? Can
those regime switches be predicted? Are those important features also relevant to other related
financial instruments? Are they relevant to other asset classes? What are the most relevant
features across all financial instruments? What is the subset of features with the highest rank
correlation across the entire investment universe? This is a much better way of researching
strategies than the foolish backtest cycle. Remember, feature importance is a research tool, and
backtesting is not.

PITFALL #3: CHRONOLOGICAL SAMPLING

In order to apply ML algorithms on your unstructured data, we need to parse it, extract valuable
information from it, and store those extractions in a regularized format. Most ML algorithms
assume a table representation of the extracted data. Finance practitioners often refer to those
tables’ rows as “bars.”

Although time bars are perhaps the most popular among practitioners and academics, they should
be avoided for two reasons. First, markets do not process information at a constant time interval.
The hour following the open is much more active than the hour around noon (or the hour around
midnight in the case of futures). As biological beings, it makes sense for humans to organize
their day according to the sunlight cycle. But today’s markets are operated by algorithms that



trade with loose human supervision, for which CPU processing cycles are much more relevant
than chronological intervals (Easley, Lopez de Prado, and O’Hara [2011]). This means that time
bars oversample information during low-activity periods and undersample information during
high-activity periods. Second, time-sampled series often exhibit poor statistical properties, like
serial correlation, heteroscedasticity, and non-normality of returns (Easley, Lépez de Prado, and
O’Hara [2012]). GARCH models were developed, in part, to deal with the heteroscedasticity
associated with incorrect sampling.

SOLUTION #3: THE VOLUME CLOCK

We can avoid the two problems described earlier by forming bars as a subordinated process of
trading activity. This approach is sometimes referred to as the volume clock (Easley, Lopez de
Prado, and O’Hara [2013]). For instance, dollar bars are formed by sampling an observation
every time a pre-defined market value is exchanged. Of course, the reference to dollars is meant
to apply to the currency in which the security is denominated, but nobody refers to euro bars,
pound bars, or yen bars.

Let me illustrate the rationale behind dollar bars with a couple of examples. First, suppose that
we wish to analyze a stock that has exhibited an appreciation of 100% over a certain period of
time. Selling $1,000 worth of that stock at the end of the period requires trading half the number
of shares it took to buy $1,000 worth of that stock at the beginning. In other words, the number
of shares traded is a function of the actual value exchanged. Therefore, it makes sense sampling
bars in terms of dollar value exchanged, rather than ticks or volume, particularly when the
analysis involves significant price fluctuations. This point can be verified empirically. If you
compute tick bars and volume bars on E-mini S&P 500 futures for a given bar size, the number
of bars per day will vary wildly over the years. That range and speed of variation will be reduced
once you compute the number of dollar bars per day over the years, for a constant bar size.
Exhibit 2 plots the exponentially weighted average number of bars per day when we apply a
fixed bar size on tick, volume, and dollar sampling methods.

A second argument that makes dollar bars more interesting than time, tick, or volume bars is that
the number of outstanding shares often changes multiple times over the course of a security’s
life, as a result of corporate actions. Even after adjusting for splits and reverse splits, there are
other actions that will impact the amount of ticks and volumes, like issuing new shares or buying
back existing shares (a very common practice since the Great Recession of 2008). Dollar bars
tend to be robust to those actions. Still, you may want to sample dollar bars where the size of the
bar is not kept constant over time. Instead, the bar size could be adjusted dynamically as a
function of the free-floating market capitalization of a company (in the case of stocks), or the
outstanding amount of issued debt (in the case of fixed-income securities).

There are more sophisticated types of bars, which sample observations as a function of the
arrival of asymmetric information. They are beyond the scope of this article, and the interested
reader can learn about them in Lopez de Prado [2018], chapter 2.



PITFALL #4: INTEGER DIFFERENTIATION

It is common in finance to find non-stationary time series. What makes these series non-
stationary is the presence of memory, i.e. a long history of previous levels that shift the series’
mean over time. In order to perform inferential analyses, researchers need to work with invariant
processes, such as returns on prices (or changes in log-prices), changes in yield, or changes in
volatility. These data transformations make the series stationary, at the expense of removing all
memory from the original series (Alexander [2001], chapter 11). Although stationarity is a
necessary property for inferential purposes, it is rarely the case in signal processing that we wish
all memory to be erased, as that memory is the basis for the model’s predictive power. For
example, equilibrium (stationary) models need some memory to assess how far the price process
has drifted away from the long-term expected value in order to generate a forecast. The dilemma
is that returns are stationary, however memory-less, and prices have memory, however they are
non-stationary. The question arises: What is the minimum amount of differentiation that makes a
price series stationary while preserving as much memory as possible?

Supervised learning algorithms typically require stationary features. The reason is that we need
to map a previously unseen (unlabeled) observation to a collection of labeled examples, and infer
from them the label of that new observation. If the features are not stationary, we cannot map the
new observation to a large number of known examples. But stationarity does not ensure
predictive power. Stationarity is a necessary, non-sufficient condition for the high performance
of an ML algorithm. The problem is, there is a trade-off between stationarity and memory. We
can always make a series more stationary through differentiation, but it will be at the cost of
erasing some memory, which will defeat the forecasting purpose of the ML algorithm.

Returns are just one kind of (and in most cases suboptimal) price transformation among many
other possibilities. Part of the importance of cointegration methods is their ability to model series
with memory. But why would the particular case of zero differentiation deliver best outcomes?
Zero differentiation is as arbitrary as 1-step differentiation. There is a wide region between these
two extremes (fully differentiated series on one hand, and zero differentiated series on the other).

SOLUTION #4: FRACTIONAL DIFFERENTIATION

Virtually all the financial time series literature is based on the premise of making non-stationary
series stationary through integer transformation (see Hamilton [1994] for an example). But why
would integer 1 differentiation (like the one used for computing returns on log-prices) be
optimal?

Fractional differentiation (FracDiff) allows us to generalize the notion of returns to non-integer
(positive real) differences d. Given a time series of observations {x;};-, _r, the FracDiff
transformation of order d at time t is X; = Y.3=o WxXt—k, With wg = 1 and

d—k+1
Wy = W1~

For the derivation and meaning of the above equation, please see Lopez de Prado [2018], chapter
5. For instance, for d = 0, all weights are 0 except for w, = 1. That is the case where the



differentiated series coincides with the original one. For d = 1, all weights are 0 except for
wo =1 and w; = —1. That is the standard first-order integer differentiation, which is used to
derive log-price returns. Anywhere in between these two cases, all weights after w, = 1 are
negative and greater than -1. Exhibit 3 plots the weights for different orders of differentiation
d € [0,1].

Consider the series of E-mini S&P 500 log-prices. The statistic of an ADF test on the original
series (d = 0) is -.3387, at which value we cannot reject the null hypothesis of unit root with
95% confidence (the critical value is -2.8623). However, the value of an ADF statistic computed
on the FracDiff series with d = .4 is -3.2733, and we can reject the null hypothesis with a
confidence level in excess of 95%. Furthermore, the correlation between the original series and
the FracDiff series with d = .4 is very high, around 0.995, indicating that most of the memory is
still preserved. Exhibit 4 plots the ADF statistic and the correlation to the original series for
various values of d. In contrast, at d = 1 (the standard returns), the FracDiff series has an ADF
statistic of -46.9114, with a correlation to the original series of only 0.05. In other words,
standard returns over-differentiate the series, in the sense of wiping-out much more memory than
it was necessary to achieve stationarity.

The above finding is not specific of E-mini S&P 500 log-prices. Lépez de Prado [2018] shows
that out of the 87 most liquid future contracts traded around the world, all of their log-prices
achieve stationarity at d < .6, and in fact the great majority are stationary at d <.3. The
conclusion is that, for decades, most empirical studies have worked with series where memory
has been unnecessarily wiped-out. The reason this is a dangerous practice is that fitting a
memory-less series will likely lead to a spurious pattern, a false discovery. Incidentally, this
over-differentiation of time series may explain why the Efficient Markets Hypothesis is still so
prevalent among academic circles: Without memory, series will not be predictive, and
researchers may draw the false conclusion that markets are unpredictable.

PITFALL #5: FIXED-TIME HORIZON LABELING
As it relates to finance, virtually all ML papers label observations using the fixed-time horizon

method. This method can be described as follows. Consider a set of features {X;};—, __;, drawn
from some bars with index t = 1,...,T, where I <T. An observation X; is assigned a label
Yi € {—1,0,1},

_1 lf rti'o’ti'0+h < -7

Yi = 0 lflrti,o.ti,o+h| ST
1 lf rti'o’ti'0+h > T

where 7 is a pre-defined constant threshold, t; , is the index of the bar immediately after X; takes
place, t; o + h is the index of h bars after t; o, and 7, +, ,+n IS the price return over a bar horizon
h,



pti,o +h
pti,o

1

rti,O'ti,O +h =

Because the literature almost always works with time bars (see Pitfall #3), h implies a fixed-time
horizon. Despite its popularity, there are several arguments to avoid this approach. First, as we
saw earlier, time bars do not exhibit good statistical properties. Second, the same threshold 7 is
applied regardless of the observed volatility. Suppose that T = 1FE — 2, where sometimes we
label an observation as y; = 1 subject to a realized bar volatility of o, = 1E — 4 (e.g., during

the night session), and sometimes o, | = 1E — 2 (e.g., around the open). The large majority of
labels will be 0, even if return 7, .. .» Was predictable and statistically significant. Third, it is

simply unrealistic to build a strategy that profits from positions that would have been stopped-out
by the fund, exchange (margin call) or investor.

SOLUTION #5: THE TRIPLE-BARRIER METHOD

A better approach is to label observations according to the condition that triggers an exit of a
position. Let us see one way to accomplish this. First, we set two horizontal barriers and one
vertical barrier. The two horizontal barriers are defined by profit-taking and stop-loss limits,
which are a dynamic function of estimated volatility (whether realized or implied). The third
barrier is defined in terms of number of bars elapsed since the position was taken (an activity-
based, not fixed-time expiration limit). If the upper horizontal barrier is touched first, we label
the observation as a 1. If the lower horizontal barrier is touched first, we label the observation as
a -1. If the vertical barrier is touched first, we have two choices: The sign of the return, or a 0. |
personally prefer the former as a matter of realizing a profit or loss within limits, but you should
explore whether a 0 works better in your particular problems.

You may have noticed that the triple barrier method is path-dependent. In order to label an
observation, we must take into account the entire path spanning [ti,o'ti,o + h], where h defines
the vertical barrier (the expiration limit). We will denote ¢t; ; the time of the first barrier touch,
and the return associated with the observed feature is 1, ., . For the sake of clarity, ¢;; < t;o +

h and the horizontal barriers are not necessarily symmetric. Exhibit 5 illustrates this labeling
method.

PITFALL #6: LEARNING SIDE AND SIZE SIMULTANEOUSLY

A common error in financial ML is to build over-complex models that must learn side and size
of a position simultaneously. Let me argue why this is in general a mistake. The “side” decision
(whether to buy or sell) is a strictly fundamental decision that has to do with the fair value of a
security under a particular set of circumstances, characterized by the features matrix. However,
the “size” decision is a risk management decision. It has to do with your risk budget, funding
capabilities, and very importantly, with your confidence on the “side” decision. Combining these
two distinct decisions into a single model is unnecessary. The additional complexity involved is
unwarranted.



In practice, it is often better to build two models, one to predict the side, and another to predict
the size of the position. The goal of the primary model is to predict the sign of the position’s
return. The goal of the secondary model is to predict the accuracy of the primary model’s
prediction. In other words, the secondary model does not attempt to predict the market, but to
learn from the weaknesses of the primary model. You can also think of the primary model as
making trading decisions, whereas the secondary model as making risk management decisions.

There is another argument for splitting the side/size decision. Many ML models exhibit high
precision (the number of true positives relative to the total number of predicted positives) and
low recall (the number of true positives relative to the total number of positives). This is
problematic, because these models are too conservative and miss most of the opportunities. Even
if these models were virtually infallible, once they enter into a drawdown, they may remain
underwater for a long time, as a result of their infrequent trading. It is better to develop models
with a high Fl-score (the harmonic average between precision and recall). This can be
accomplished by splitting the side and size decisions into two models, where the secondary
model applies meta-labeling.

SOLUTION #6: META-LABELING

Meta-labeling is particularly helpful when you want to achieve higher F1-scores. First, we build
a primary model that achieves high recall (e.g., in predicting market rallies), even if the precision
is not particularly high. Second, we correct for the low precision by labeling the bets of the
primary model according to their outcome (positive or negative). The goal of these meta-labels is
to increase your F1-score by filtering out the false positives, where the positives have already
been identified by the primary model. Stated differently, the role of the secondary ML algorithm
is to determine whether a positive from the primary (side decision) model is true or false. It is not
its purpose to come up with a betting opportunity. Its purpose is to determine whether we should
act or pass on the opportunity that has been presented.

Meta-labeling is a very powerful tool to have in your arsenal, for four additional reasons. First,
ML algorithms are often criticized as black boxes. Meta-labeling allows you to build an ML
system on top of a white box (like a fundamental model founded on economic theory). This
ability to transform a fundamental model into a ML model should make meta-labeling
particularly useful to “quantamental” firms. Second, the effects of overfitting are limited when
you apply meta-labeling, because ML will not decide the side of your bet, only the size. There is
not a single model or parameter combination that controls the overall strategy behavior. Third,
by decoupling the side prediction from the size prediction, meta-labeling enables sophisticated
strategy structures. For instance, consider that the features driving a rally may differ from the
features driving a sell-off. In that case, you may want to develop an ML strategy exclusively for
long positions, based on the buy recommendations of a primary model, and an ML strategy
exclusively for short positions, based on the sell recommendations of an entirely different
primary model. Fourth, achieving high accuracy on small bets and low accuracy on large bets
will ruin you. As important as identifying good opportunities is to size them properly, so it
makes sense to develop an ML algorithm solely focused on getting that critical decision (sizing)
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right. In my experience, meta-labeling ML models can deliver more robust and reliable outcomes
than standard labeling models.

PITFALL #7: WEIGHTING OF NON-IID SAMPLES

Most non-financial ML researchers can assume that observations are drawn from IID processes.
For example, you can obtain blood samples from a large number of patients, and measure their
cholesterol. Of course, various underlying common factors will shift the mean and standard
deviation of the cholesterol distribution, but the samples are still independent: There is one
observation per subject.

Suppose you take those blood samples, and someone in your laboratory spills blood from each
tube to the following 9 tubes to their right. That is, tube 10 contains blood for patient 10, but also
blood from patients 1 to 9. Tube 11 contains blood from patient 11, but also blood from patients
2 to 10, and so on. Now you need to determine the features predictive of high cholesterol (diet,
exercise, age, etc.), without knowing for sure the cholesterol level of each patient.

This “spilled samples” problem is equivalent to the challenge that we face in financial ML,
where: (1) labels are decided by outcomes; (2) outcomes are decided over multiple observations;
(3) because labels overlap in time, we cannot be certain about what observed features caused an
effect.

SOLUTION #7: UNIQUENESS WEIGHTING AND SEQUENTIAL BOOTSTRAPPING
Two labels y; and y; are concurrent at observation ¢t when both are a function of at least one

common return, r,_; ¢ = ppt — 1. We can measure the degree of uniqueness of observations as

t—-1

follows:
1. For each observation t = 1, ..., T, we form a binary array, {1t,i}
which indicates whether its outcome spans over return r,_ .
2. We compute the number of labels concurrent at t, ¢, = Xi_; 1;;.
The uniqueness of a label i at time ¢ is u,; = 1,;¢; .
4. The average uniqueness of label i is the average u,; over the label’s lifespan, @; =
-1
(Z?:l ut,i)(ZLl 1t,i) :
5. Sample weights can be defined in terms of the sum of the attributed returns over the
event’s lifespan, [ti,o, ti,1]7

L pwith 1. € {0,13,

i=1,..

w

ti1
~ Tt—1t
w; = c
tzti‘o t
I -1
wW; = WLI E W]
j=1

The rationale for this method is that we weight an observation as a function of the absolute log
returns that can be attributed uniquely to it. Lopez de Prado [2018], chapter 4, shows how this
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weighting scheme can be further used to bootstrap samples with low uniqueness. The general
notion is that, rather than drawing all samples simultaneously, the draw the samples sequentially,
where at each step we increase the probability of drawing highly unique observations, and reduce
the probability of drawing observations with low uniqueness. Monte Carlo experiments
demonstrate that sequential bootstrapping can significantly increase the average uniqueness of
samples, hence injecting more information into the model and reducing the “spilled samples”
effect.

PITFALL #8: CROSS-VALIDATION LEAKAGE

One reason k-fold CV fails in finance is because observations cannot be assumed to be drawn
from an 11D process. Leakage takes place when the training set contains information that also
appears in the testing set. Consider a serially correlated feature X that is associated with labels Y
that are formed on overlapping data: (1) Because of the serial correlation, X; = X;.; (2) because
labels are derived from overlapping data points, Y; = Y;,1. Then, placing t and t+1 in different
sets leaks information. When a classifier is first trained on (X;, Y;), and then it is asked to predict
E[Y;,,] based on an observed X;,,, this classifier is more likely to achieve Y,,; = E[Y;,,] even
if X is an irrelevant feature. In the presence of irrelevant features, leakage leads to false
discoveries.

SOLUTION #8: PURGING AND EMBARGOING
One way to reduce leakage is to eliminate from the training set all observations whose labels
overlapped in time with those labels included in the testing set. I call this process purging.

Consider a label Y; that is a function of observations in the closed range ¢ € [tj,Oftj,l]a Y, =

f [[tj,or tj,1]] (with some abuse of notation). For example, in the context of the triple barrier
labeling method, it means that the label is the sign of the return spanning between price bars with
indices t; ; and ¢; 1, that is sgn [rtj,Ovtj,l]' Alabel Y; = f [[tj,o' tj,l]] overlaps with Y; if any of the
three sufficient conditions is met: (1) tjo < t;o < tj1; (2) tjo<ti1 <tj1; 3) tipo <tjo <
ti1 <t

Since financial features often incorporate series that exhibit serial correlation (like ARMA
processes), we should eliminate from the training set observations that immediately follow an
observation in the testing set. I call this process embargo. The embargo does not need to affect

training observations prior to a test, because training labels Y; = f [[ti,o, tl-,l]], where t;; < tj
(training ends before testing begins), contain information that was available at the testing time
tjo- We are only concerned with training labels V; = f [[ti,o, ti,l]] that take place immediately
after the test, tj; < t;o < tj; +h. We can implement this embargo period % by setting Y; =
f [[tj'o, tii+ h]] before purging. A small value h = .01T, where T is the number of bars, often

suffices to prevent all leakage. Exhibit 6 illustrates how purging and embargoing would be
implemented on a particular train/test split.
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PITFALL #9: WALK-FORWARD (OR HISTORICAL) BACKTESTING

The most common backtest method in the literature is the walk-forward (WF) approach. WF is a
historical simulation of how the strategy would have performed in past. Each strategy decision is
based on observations that predate that decision. WF enjoys two key advantages: (1) WF has a
clear historical interpretation. Its performance can be reconciled with paper trading. (2) History
is a filtration; hence, using trailing data guarantees that the testing set is out-of-sample (no
leakage), as long as purging has been properly implemented.

WEF suffers from three major disadvantages: First, a single scenario is tested (the historical path),
which can be easily overfit (Bailey et al. [2014]). Second, WF is not necessarily representative of
future performance, as results can be biased by the particular sequence of datapoints. Proponents
of the WF method typically argue that predicting the past would lead to overly optimistic
performance estimates. And yet, very often fitting an outperforming model on the reversed
sequence of observations will lead to an underperforming WF backtest. The truth is, it is as easy
to overfit a walk-forward backtest as to overfit a walk-backward backtest, and the fact that
changing the sequence of observations yields inconsistent outcomes is evidence of that
overfitting. If proponents of WF were right, we should observe that walk-backwards backtests
systematically outperform their walk-forward counterparts. That is not the case, hence the main
argument in favor of WF is rather weak. To make this second disadvantage clearer, suppose an
equity strategy that is backtested with a WF on S&P 500 data, starting January 1, 2007. Until
March 15, 2009, the mix of rallies and sell-offs will train the strategy to be market neutral, with
low confidence on every position. After that, the long rally will dominate the dataset, and by
January 1, 2017, buy forecasts will prevail over sell forecasts. Performance would be very
different if we played the information backwards, from January 1, 2017 to January 1, 2007 (a
long rally followed by a sharp sell-off). By exploiting a particular sequence, a strategy selected
by WF may set us up for a debacle. The third disadvantage of WF is that the initial decisions are
made on a smaller portion of the total sample. Even if a warm-up period is set, most of the
information is used by only a small portion of the decisions.

SOLUTION #9: COMBINATORIAL PURGED CROSS-VALIDATION

The three pitfalls of WF can be addressed by simulating a large number of scenarios, where each
scenario provides us with a backtest path. This in turn will allow us to fully use the data and
avoid warm-up periods. One way to achieve this is by generating thousands of train/test splits, so
that every part of the series is tested multiple times (not just once). Let us outline how the
combinatorial purged cross-validation (CPCV) method works.

Consider T observations partitioned into N groups without shuffling, where groups n =
1,...,N — 1 are of size [T/N|, the Nth group is of size T — |[T/N|(N — 1), and [. ] is the floor or
integer function. For a testing set of size k groups, the number of possible training/testing splits is

[T (N =)
(N]X k) - OTl

Since each combination involves k tested groups, the total number of tested groups is k (NIX k)'

And since we have computed all possible combinations, these tested groups are uniformly
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distributed across all N (each group belongs to the same number of training and testing sets). The
implication is that from k-sized testing sets on N groups we can backtest a total number of paths
@[N, k],

k(N ) [V — D)

oIk =5y 2 k) = =D

Exhibit 7 illustrates the composition of train/test splits for N = 6 and k = 2. There are (Z) =15

splits, indexed as S1/,...,S15. For each split, the figure marks with a cross (x) the groups included
in the testing set, and leaves unmarked the groups that form the training set. Each group forms
part of ¢[6,2] =5 testing sets, therefore this train/test split scheme allows us to compute 5
backtest paths.

Exhibit 8 shows the assignment of each tested group to one backtest path. For example, path 1 is
the result of combining the forecasts from (G1,S51), (G2,51), (G3,52), (G4,53), (G5,54) and
(G6, S5). Path 2 is the result of combining forecasts from (G1,52), (G2,56), (G3,56), (G4,57),
(G5, 58) and (G6,S9), and so on.

In the example above we have generated only 5 paths, however CPCV allows us to generate
thousands of paths on a sufficiently long series. The number of paths ¢[N, k] increases with
N — T and with k - N /2. A key advantage of CPCV is that it allows us to derive a distribution
of Sharpe ratios, as opposed to a single (likely overfit) Sharpe ratio estimate.

PITFALL #10: BACKTEST OVERFITTING
Given a sample of 1ID random variables, x;~Z, i =1, ...,1, where Z is the standard normal
distribution, the expected maximum of that sample can be approximated as

Elmax(xdioa, o] = 1~z [1— 7] 427t [1 - Tem| < ZioglT]

where Z~1[.] is the inverse of the CDF of Z, y = 0.5772156649 ... is the Euler-Mascheroni
constant and 7 > 1 (see Bailey et al. [2014] for a proof). Now suppose that a researcher
backtests | strategies on an instrument that behaves like a martingale, with Sharpe ratios

{vi}i=1..1» Elv:] =0, a?[y;] > 0, and %}fifz. Even though the true Sharpe ratio is zero, we

expect to find one strategy with a Sharpe ratio of

E[max{y;}i=1,.;] = E[max{x;};=1_;]olyi]

WF backtests exhibit high variance, a[y;] > 0, for at least one reason: A large portion of the
decisions are based on a small portion of the dataset. A few observations will have a large weight
on the Sharpe ratio. Using a warm-up period will reduce the backtest length, which may
contribute to making the variance even higher. WF’s high variance leads to false discoveries,
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because researchers will select the backtest with the maximum estimated Sharpe ratio, even if the
true Sharpe ratio is zero. That is the reason why it is imperative to control for the number of
trials (1) in the context of WF backtesting. Without this information, it is not possible to
determine the Family-Wise Error Rate (FWER), False Discovery Rate (FDR), Probability of
Backtest Overfitting (PBO) or similar.

SOLUTION #10: THE DEFLATED SHARPE RATIO
The probabilistic Sharpe ratio (PSR) provides an adjusted estimate of the Sharpe ratio, by

removing the inflationary effect caused by short series with skewed and/or fat-tailed returns.
Given a user-defined rejection threshold SR*, and an observed Sharpe ratio SR, PSR estimates
the probability that SR is greater than a hypothetical SR*. Following Bailey and L6pez de Prado
[2012], PSR can be estimated as

|[ (SR—SR*NT -1 ]|

i-psm e Bt

PSR[SR*]| =Z

where Z[.] is the CDF of the standard Normal distribution, T is the number of observed returns,
75 is the skewness of the returns, and 7, is the kurtosis of the returns (¥, = 3 for Gaussian
returns). For a given SR*, PSR increases with greater SR (in the original sampling frequency, i.e.
non-annualized), or longer track records (T), or positively skewed returns (¥3), but it decreases
with fatter tails (7,).

The deflated Sharpe ratio (DSR) computes the probability that the true Sharpe ratio exceeds a
rejection threshold SR*, where that rejection threshold is adjusted to reflect the multiplicity of
trials. Following Bailey and Lopez de Prado [2014], DSR can be estimated as PSR[SR*], where
the benchmark Sharpe ratio, SR*, is no longer user-defined. Instead, SR* is estimated as

SR* = |V[{SRa}] <(1 -nz? [1 - %] +yz7! [1 - %e‘lD

where V[{fl\?n}] is the variance across the trials’ estimated SR, N is the number of independent
trials, Z[.] is the CDF of the standard Normal distribution, y is the Euler-Mascheroni constant,
andn=1,..,N.

The rationale behind DSR is the following: Given a set of SR estimates, {SR,}, its expected
maximum is greater than zero, even if the true SR is zero. Under the null hypothesis that the
actual Sharpe ratio is zero, Hy:SR = 0, we know that the expected maximum SR can be
estimated as the SR*. Indeed, SR* increases quickly as more independent trials are attempted (N),
or the trials involve a greater variance (V[{SR,}]).
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CONCLUSIONS

Many of the most successful hedge funds in history apply ML techniques. However, ML is far
from being a panacea, and a large number of funds that have attempted to join ML investing
have failed. The reason is, financial datasets exhibit properties that violate standard assumptions
of ML applications. When ML techniques are applied to financial datasets in disregard of those
properties, these techniques produce false positives. In the context of investing, the implication is
that most ML funds fail to deliver the expected performance. In this article we have reviewed
some of the most pervasive errors made by ML experts when they attempt to apply ML
techniques to financial datasets.
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EXHIBITS

# Category Pitfall Solution
1 | Epistemological The Sisyphus paradigm The meta-strategy paradigm
.2 |Epistemological | Research through backtesting | | Feature importance analysis
3 | Data processing Chronological sampling The volume clock
4 |Dataprocessing| | Integer differentiation | Fractional differentiation
5| Classification Fixed-time horizon labeling The triple-barrier method
6 | Classification | Learningside and size simultaneously Meta-labeling
7 | Classification Weighting of non-IID samples Uniqueness we|ght|ng; sequential
. bootstrapping
8 Evaluation Cross-validation leakage Purging and embargoing
9 Evaluation Walk-forward (historical) backtesting | Combinatorial purged cross-validation
. - Backtesting on synthetic data; the
10( Evaluation Backtest overfitting

deflated Sharpe ratio

Exhibit 1 — The 10 reasons most machine learning funds fail
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Exhibit 2 - Average daily frequency of tick, volume, and dollar bars
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Exhibit 3 — w; (y-axis) as k increases (x-axis). Each line is associated with
a particular value of d € [0,1], in 0.1 increments
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Exhibit 4 — ADF statistic as a function of d, on E-mini S&P 500 futures log prices
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Exhibit 5 — The triple-barrier method
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Exhibit 6 — Purging overlap plus embargoing training examples after test
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Exhibit 7 — Paths generated for ¢[6,2] = 5
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Exhibit 8 — Assignment of testing groups to each of the 5 paths
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