
NoSQL way in PostgreSQL
Vibhor Kumar (Principal System Engineer)

© 2014 EnterpriseDB Corporation. All rights reserved. 2

• Intro to JSON, HSTORE and PL/V8

• JSON History in Postgres

• JSON Data Types, Operators and Functions

• JSON, JSONB– when to use which one?

• JSONB and Node.JS – easy as pie

• NoSQL Performance in Postgres – fast as greased lightning

• Say ‘Yes’ to ‘Not only SQL’

• Useful resources

Agenda

© 2014 EnterpriseDB Corporation. All rights reserved. 3

• Where did NoSQL come from?

− Where all cool tech stuff comes from – Internet companies

• Why did they make NoSQL?

− To support huge data volumes and evolving demands for ways
to work with new data types

• What does NoSQL accomplish?

− Enables you to work with new data types: email, mobile
interactions, machine data, social connections

− Enables you to work in new ways: incremental development
and continuous release

• Why did they have to build something new?

− There were limitations to most relational databases

Let’s Ask Ourselves, Why NoSQL?

© 2014 EnterpriseDB Corporation. All rights reserved. 4

NoSQL: Real-world Applications

• Emergency Management System

− High variability among data sources required high schema
flexibility

• Massively Open Online Course

− Massive read scalability, content integration, low latency

• Patient Data and Prescription Records

− Efficient write scalability

• Social Marketing Analytics

− Map reduce analytical approaches

Source: Gartner, A Tour of NoSQL in 8 Use Cases,

by Nick Heudecker and Merv Adrian, February 28, 2014

© 2014 EnterpriseDB Corporation. All rights reserved. 5

• HSTORE

− Key-value pair

− Simple, fast and easy

− Postgres v 8.2 – pre-dates many NoSQL-only solutions

− Ideal for flat data structures that are sparsely populated

• JSON

− Hierarchical document model

− Introduced in Postgres 9.2, perfected in 9.3

• JSONB

− Binary version of JSON

− Faster, more operators and even more robust

− Postgres 9.4

Postgres’ Response

© 2014 EnterpriseDB Corporation. All rights reserved. 6

• Supported since 2006, the HStore
contrib module enables storing
key/value pairs within a single
column

• Allows you to create a schema-less,
ACID compliant data store within
Postgres

Postgres: Key-value Store

• Combines flexibility with ACID compliance

• Create single HStore column and
include, for each row, only those keys
which pertain to the record

• Add attributes to a table and query
without advance planning

© 2014 EnterpriseDB Corporation. All rights reserved. 7

• Create a table with HSTORE field

CREATE TABLE hstore_data (data HSTORE);

• Insert a record into hstore_data

INSERT INTO hstore_data (data) VALUES (’

"cost"=>"500",

"product"=>"iphone",

"provider"=>"apple"');

• Select data from hstore_data

SELECT data FROM hstore_data ;

--

"cost"=>"500”,"product"=>"iphone”,"provider"=>"Apple"

(1 row)

HSTORE Examples

© 2014 EnterpriseDB Corporation. All rights reserved. 8

• JSON is the most popular
data-interchange format on the web

• Derived from the ECMAScript
Programming Language Standard
(European Computer Manufacturers
Association).

• Supported by virtually every
programming language

• New supporting technologies
continue to expand JSON’s utility

− PL/V8 JavaScript extension

− Node.js

• Postgres has a native JSON data type (v9.2) and a JSON parser and a
variety of JSON functions (v9.3)

• Postgres will have a JSONB data type with binary storage and indexing
(coming – v9.4)

Postgres: Document Store

© 2014 EnterpriseDB Corporation. All rights reserved. 9

• Creating a table with a JSONB field
CREATE TABLE json_data (data JSONB);

• Simple JSON data element:
{"name": "Apple Phone", "type": "phone", "brand":

"ACME", "price": 200, "available": true,

"warranty_years": 1}

• Inserting this data element into the table json_data
INSERT INTO json_data (data) VALUES

(’ { "name": "Apple Phone",

"type": "phone",

"brand": "ACME",

"price": 200,

"available": true,

"warranty_years": 1

} ')

JSON Examples

© 2014 EnterpriseDB Corporation. All rights reserved. 10

• JSON data element with nesting:
{“full name”: “John Joseph Carl Salinger”,

“names”:

[

{"type": "firstname", “value”: ”John”},

{“type”: “middlename”, “value”: “Joseph”},

{“type”: “middlename”, “value”: “Carl”},

{“type”: “lastname”, “value”: “Salinger”}

]

}

JSON Examples

© 2014 EnterpriseDB Corporation. All rights reserved. 11

SELECT DISTINCT

data->>'name' as products

FROM json_data;

products

Cable TV Basic Service Package

AC3 Case Black

Phone Service Basic Plan

AC3 Phone

AC3 Case Green

Phone Service Family Plan

AC3 Case Red

AC7 Phone

A simple query for JSON data

This query does not
return JSON data – it
returns text values
associated with the
key ‘name’

© 2014 EnterpriseDB Corporation. All rights reserved. 12

SELECT data FROM json_data;

data

--

{"name": "Apple Phone", "type": "phone",

"brand": "ACME", "price": 200,

"available": true, "warranty_years": 1}

A query that returns JSON data

This query returns the JSON data in its
original format

© 2014 EnterpriseDB Corporation. All rights reserved. 13

• JSON is naturally
integrated with ANSI SQL
in Postgres

• JSON and SQL queries
use the same language, the
same planner, and the same ACID compliant
transaction framework

• JSON and HSTORE are elegant and easy to use
extensions of the underlying object-relational model

JSON and ANSI SQL - PB&J for the DBA

© 2014 EnterpriseDB Corporation. All rights reserved. 14

SELECT DISTINCT

product_type,

data->>'brand' as Brand,
data->>'available' as Availability

FROM json_data

JOIN products
ON (products.product_type=json_data.data->>'name')
WHERE json_data.data->>'available'=true;

product_type | brand | availability
---------------------------+-----------+--------------
AC3 Phone | ACME | true

JSON and ANSI SQL Example

ANSI SQL

JSON

No need for programmatic logic to combine SQL and

NoSQL in the application – Postgres does it all

© 2014 EnterpriseDB Corporation. All rights reserved. 15

Bridging between SQL and JSON

Simple ANSI SQL Table Definition
CREATE TABLE products (id integer, product_name text);

Select query returning standard data set
SELECT * FROM products;

id | product_name

----+--------------

1 | iPhone

2 | Samsung

3 | Nokia

Select query returning the same result as a JSON data set

SELECT ROW_TO_JSON(products) FROM products;

{"id":1,"product_name":"iPhone"}

{"id":2,"product_name":"Samsung"}

{"id":3,"product_name":"Nokia”}

© 2014 EnterpriseDB Corporation. All rights reserved. 16

• 1. Number:
− Signed decimal number that may contain a fractional part and may use exponential

notation.
− No distinction between integer and floating-point

• 2. String
− A sequence of zero or more Unicode characters.
− Strings are delimited with double-quotation mark
− Supports a backslash escaping syntax.

• 3. Boolean
− Either of the values true or false.

• 4. Array
− An ordered list of zero or more values,
− Each values may be of any type.
− Arrays use square bracket notation with elements being comma-separated.

• 5. Object
− An unordered associative array (name/value pairs).
− Objects are delimited with curly brackets
− Commas to separate each pair
− Each pair the colon ':' character separates the key or name from its value.
− All keys must be strings and should be distinct from each other within that object.

• 6. null
− An empty value, using the word null

JSON Data Types

JSON is defined per RFC – 7159

For more detail please refer

http://tools.ietf.org/html/rfc7159

© 2014 EnterpriseDB Corporation. All rights reserved. 17

{
"firstName": "John", -- String Type
"lastName": "Smith", -- String Type
"isAlive": true, -- Boolean Type
"age": 25, -- Number Type
"height_cm": 167.6, -- Number Type
"address": { -- Object Type

"streetAddress": "21 2nd Street”,
"city": "New York”,
"state": "NY”,
"postalCode": "10021-3100”

},
"phoneNumbers": [// Object Array

{ // Object
"type": "home”,
"number": "212 555-1234”

},
{

"type": "office”,
"number": "646 555-4567”

}
],
"children": [],
"spouse": null // Null

}

JSON Data Type Example

© 2014 EnterpriseDB Corporation. All rights reserved. 18

• JSON

− New JSON creation functions (json_build_object, json_build_array)

− json_typeof – returns text data type (‘number’, ‘boolean’, …)

• JSONB data type

− Canonical representation

− Whitespace and punctuation dissolved away

− Only one value per object key is kept

− Last insert wins

− Key order determined by length, then bytewise comparison

− Equality, containment and key/element presence tests

− New JSONB creation functions

− Smaller, faster GIN indexes

− jsonb subdocument indexes

− Use “get” operators to construct expression indexes on subdocument:

− CREATE INDEX author_index ON books USING GIN ((jsondata ->

'authors'));

− SELECT * FROM books WHERE jsondata -> 'authors' ? 'Carl

Bernstein'

JSON 9.4 – New Operators and Functions

© 2014 EnterpriseDB Corporation. All rights reserved. 19

• BSON – stands for
‘Binary JSON’

• BSON != JSONB

− BSON cannot represent an integer or
floating-point number with more than
64 bits of precision.

− JSONB can represent arbitrary JSON values.

• Caveat Emptor!

− This limitation will not be obvious during early
stages of a project!

JSON and BSON

© 2014 EnterpriseDB Corporation. All rights reserved. 20

• JSON/JSONB is more versatile than HSTORE

• HSTORE provides more structure

• JSON or JSONB?

− if you need any of the following, use JSON

− Storage of validated json, without processing or indexing it

− Preservation of white space in json text

− Preservation of object key order Preservation of duplicate object
keys

− Maximum input/output speed

• For any other case, use JSONB

JSON, JSONB or HSTORE?

© 2014 EnterpriseDB Corporation. All rights reserved. 21

JSONB and Node.js - Easy as π

• Simple Demo of Node.js to Postgres cnnection

© 2014 EnterpriseDB Corporation. All rights reserved. 22

• Goal

− Help our customers understand when to chose
Postgres and when to chose a specialty
solution

− Help us understand where the NoSQL limits of
Postgres are

• Setup

− Compare Postgres 9.4 to Mongo 2.6

− Single instance setup on AWS M3.2XLARGE
(32GB)

• Test Focus

− Data ingestion (bulk and individual)

− Data retrieval

JSON Performance Evaluation

© 2014 EnterpriseDB Corporation. All rights reserved. 23

Performance Evaluation

Generate 50 Million
JSON Documents

Load into MongoDB 2.6

(IMPORT)

Load into
Postgres 9.4

(COPY)

50 Million individual
INSERT commands

50 Million individual
INSERT commands

Multiple SELECT
statements

Multiple SELECT
statements

T1

T2

T3

© 2014 EnterpriseDB Corporation. All rights reserved. 24

NoSQL Performance Evaluation

276% 295%

465%

208%

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

500%

Data Load Insert Select Size

Mongo DB 2.4/Postgres 9.4 Relative Performance
Comparison (50 Million Documents)

Postgres

MongoDB

Postgres MongoDB

Data Load (s) 4,732 13,046

Insert (s) 29,236 86,253

Select (s) 594 2,763

Size (GB) 69 145

Correction to earlier versions:

MongoDB console does not allow for
INSERT of documents > 4K. This
lead to truncation of the MongoDB
size by approx. 25% of all records in
the benchmark.

© 2014 EnterpriseDB Corporation. All rights reserved. 25

• Initial tests confirm that Postgres’ can handle many

NoSQL workloads

• EDB is making the test scripts publically available

• EDB encourages community participation to

better define where Postgres should be used

and where specialty solutions are appropriate

• Download the source at
https://github.com/EnterpriseDB/pg_nosql_benchmark

• Join us to discuss the findings at
http://bit.ly/EDB-NoSQL-Postgres-Benchmark

Performance Evaluations – Next Steps

https://github.com/EnterpriseDB/pg_nosql_benchmark
http://bit.ly/EDB-NoSQL-Postgres-Benchmark

© 2014 EnterpriseDB Corporation. All rights reserved. 26

• Structures and standards emerge!

• Data has references (products link to catalogues;
products have bills of material; components appear in
multiple products; storage locations link to ISO country
tables)

• When the database has duplicate data entries, then the
application has to manage updates in multiple places –
what happens when there is no ACID transactional
model?

Structured or Unstructured?

“No SQL Only” or “Not Only SQL”?

© 2014 EnterpriseDB Corporation. All rights reserved. 27

Ultimate Flexibility with Postgres

In-DB Development
PL/pgSQL, PL/SQL, PL/Tcl, PL/Perl

PL/Python

Structured
Data

On Premise
Deployment

Web 2.0
Application

Development

Unstructured
Data

Cloud
Deployment

© 2014 EnterpriseDB Corporation. All rights reserved. 28

• Postgres overcomes many of the standard objections
“It can’t be done with a conventional database system”

• Postgres

− Combines structured data and unstructured data (ANSI SQL
and JSON/HSTORE)

− Is faster (for many workloads) than than the leading NoSQL-
only solution

− Integrates easily with Web 2.0 application development
environments

− Can be deployed on-premise or in the cloud

Do more with Postgres – the Enterprise NoSQL Solution

Say yes to ‘Not only SQL’

© 2014 EnterpriseDB Corporation. All rights reserved. 29

• Postgres NoSQL Training Events

− Bruce Momjian & Vibhor Kumar @ pgEurope

− Madrid (Oct 21): Maximizing Results with JSONB and PostgreSQL

• Whitepapers @ http://www.enterprisedb.com/nosql-for-enterprise

− PostgreSQL Advances to Meet NoSQL Challenges (business
oriented)

− Using the NoSQL Capabilities in Postgres (full of code examples)

• Run the NoSQL benchmark

− https://github.com/EnterpriseDB/pg_nosql_benchmark

Useful Resources

https://github.com/EnterpriseDB/pg_nosql_benchmark

© 2014 EnterpriseDB Corporation. All rights reserved. 30

