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PCA is technique of reducing dimension, suppose we have set of n variables, A1, A2…..AN. we 

know the co-variance between these A variables so we construct the linear combination 

W=X1A1+X2A2…XNAN. The objective of this exercise is to maximize the variance of W and 

choose the weight of X variable so that we can determine which of them is explaining W more 

efficiently. 

As mentioned before we are working to reduce the dimension and also trying to find out that at 

given point of time with less number of variable which is capable of explaining W so that we 

can only focus on that many parameters. 

We need to understand few of mathematical terms in order to understand this process further 

and they are as follow: 

 Standard Deviation: The standard deviation of data set is a measure of how spread out 

the data is. In mathematical term it is square distance of each point from its mean. 

Adding all this and dividing them by number of observation and square root of this 

number will give you Standard Deviation. 

 

 Variance: Variance is another method of spread dataset and it’s almost identical to 

standard deviation. Only thing is that we do not apply square root to above observation.  

 

 Co-Variance: Standard Deviation and Variance only operates on one dimension let’s say 

we have dataset X{1,2,3,…..,6} and another dataset as Y{2,3,4,5….44} we can individually 

measure their Standard Deviation and Variance but if we want to measure how X & Y 

vary with respect to each other and there we talk about their co-movement and that is 

Covariance. 

 

 Co-Variance Matrix: We have seen that covariance in above case is between two 

dimensions but what about if we have more such dataset instead of just X & Y. So when 

we have more such dataset we create matrix of such set and it’s known to be Covariance 

Matrix. 

 

 Eigen Vectors: We can multiply two matrices together provided they are of compatible 

sizes. Eigen Vector is special of this cases let’s look at them with few example and try to 

understand them further. 
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o The above example is on Non-Eigen Vector, here there is one square matrix 

and multiplied to vector and resultant value gives a Vector but this resultant 

vector is not integer multiple of original vector.  

 

    

o In this case we can see it’s clearly case of Eigen Vector, since the resultant 

vector is 4 times the input vector.  

 

 Properties of Eigen Vector:  

o They are from the family of Square Matrices. If suppose they are of 

dimension 3 X 3 than there will be 3 Eigen Vectors. 

o If you Scale the vector by some amount before multiplying it. You will get 

same multiple of it as a result, this is because you are not changing the 

direction but you are just making it longer. 

o All Eigen Vectors of matrix are perpendicular (orthogonal). It’ll help you 

to represent data in terms of perpendicular Eigen Vector instead of X & Y 

axes. 

 

 Eigen Values: This is nothing but acting as scalar multiple associated with Eigen 

Vector, as in above example resultant multiple got scaled up by four time of 

original vector. 
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PCA Introduction: PCA is also a way to identify the pattern in data and expressing data in such 

a way as to highlight similarities and differences. Since it becomes difficult to find out pattern in 

large dimension of dataset we require reducing the dimension and also at the same time don’t 

want to lose much of information so after performing PCA we are left with limited dimension. 

Also, the important part of this analysis is that when we take input data they might be highly 

correlated and we are trying to reduce them and make component of data and this component 

are uncorrelated (orthogonal) to each other. 

 Dataset: We will examine Nifty Fifty component so we take all Fifty stock constitute 

Nifty as an Index. The dataset used is from 02nd January, 2012 to 28th February, 2012 with 

price interval of 30 minutes. So in total we have 50 stocks and each stock consist of 524 

data points. In order to have dataset to follow standard numbers we will do analysis on 

return of this dataset. 

 R Code : 

o Dataset to be formed and to make a standard Data Frame. 
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o Since everything is in order and put into one data frame it’s time to run PCA on given 

data frame. In R there are two different commands for PCA prcomp () and princomp ().  

We are using prcomp () and get summary as mentioned below. 

 

 

o We can also analyze standard deviation of each component. The standard deviation of 

component is stored in a named element called “sdev” of the output variable made by 

prompt() 
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o In order to decide how many component to be retained, it is common to summarize the 

result in term of scree plot, which we can do using R “screeplot ()” function. 

o Screeplot(pca, type=”lines”) 

 

 

The above screeplot shows very high variation for 1st and 2nd component and then after 

decay as component progress further. It helps us to decide upon how many components 

needed. As we can see above plot becomes very steep after decaying from 8th point 

onward. 
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o The next step is to see loadings for principal components, they are stored in named 

element “rotation” of the variable returned by “prcomp ()”. This contain matrix with the 

loadings of each component. We’ll see first eight components as it explain 60% variation 

as we have observed before in “summary (pca)”. 

o Now let’s look at first component PC1 which explain in term of linear relation as follow. 

 PC1= 0.20158279*axi+0.0784954*baj………………………………….………+0.18669640*lnt.  

o Note that the square of loadings sum to 1, as this is a constraint used in calculating 

loadings.  >sum((pca$rotation[,1])^2) 

o [1] 1 
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Stock PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 Stock

AXI -0.032% -0.022% -0.034% 0.012% -0.013% 0.014% -0.011% 0.007%

BAJ 0.100% 0.079% -0.010% 0.239% -0.250% -0.202% 0.172% -0.081%

BHA -0.013% -0.005% -0.001% -0.009% -0.007% 0.041% 0.047% -0.042%

BHE 0.177% 0.084% 0.310% -0.339% -0.300% 0.279% -0.287% -0.048% 0.063%

BPC 0.023% -0.007% 0.009% 0.127% 0.134% -0.013% 0.024% -0.137%

CAI 0.052% -0.011% -0.033% 0.095% -0.231% 0.102% 0.062% -0.165%

CAN 0.107% 0.058% 0.079% -0.002% 0.107% 0.003% 0.023% -0.036% 0.049%

CIP -0.011% 0.000% 0.004% -0.034% 0.021% 0.005% 0.007% 0.017%

DLF 0.050% 0.012% 0.006% -0.001% 0.013% -0.012% 0.008% 0.048%

DRR 0.005% -0.003% -0.005% 0.023% 0.003% -0.016% -0.003% -0.017%

GAI 0.003% -0.001% -0.004% 0.006% 0.002% -0.004% -0.002% 0.003%

GRA -0.024% -0.025% 0.004% -0.075% 0.022% 0.034% -0.007% -0.043%

HCL 0.021% 0.017% -0.021% 0.032% -0.071% 0.101% 0.035% 0.003%

HDF 0.004% 0.003% 0.006% 0.006% 0.005% -0.002% 0.001% -0.005%

HBK 0.023% 0.005% 0.007% 0.035% 0.016% -0.012% 0.004% -0.016%

HER 0.016% 0.012% 0.006% 0.024% -0.032% -0.036% 0.051% -0.021%

HIN -0.007% -0.006% 0.010% -0.001% -0.009% -0.005% -0.004% -0.001%

HUL -0.003% -0.004% 0.001% -0.009% 0.001% 0.002% -0.001% -0.001%

ICI -0.024% -0.020% -0.025% 0.010% -0.009% 0.006% -0.013% -0.007%

IDF 0.160% 0.082% 0.182% -0.162% 0.257% 0.084% -0.105% -0.270% 0.067%

INF 0.015% 0.021% -0.050% 0.023% -0.074% 0.123% 0.037% 0.047%

ITC -0.002% -0.008% 0.004% -0.018% 0.006% 0.000% -0.006% 0.002%

JIN -0.018% 0.000% -0.002% 0.001% 0.030% -0.007% 0.011% -0.001%

JPA 0.110% 0.018% 0.045% -0.008% -0.016% 0.050% -0.001% 0.108% 0.047%

KOT -0.099% -0.026% -0.111% -0.071% -0.025% 0.087% -0.082% 0.032%

MNM 0.011% 0.010% -0.003% 0.005% -0.011% -0.007% 0.004% 0.011%

MAR 0.007% 0.005% 0.001% 0.009% -0.003% 0.002% 0.009% 0.001%

NTP 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%

ONG -0.008% -0.004% -0.006% -0.016% 0.007% -0.011% 0.015% 0.023%

PNB -0.074% -0.043% -0.108% 0.001% -0.005% 0.047% -0.025% 0.022%

POW -0.019% -0.006% 0.010% -0.026% 0.011% 0.018% 0.011% 0.005%

RAN 0.025% 0.010% 0.081% 0.036% -0.011% -0.032% -0.003% 0.001%

RCO 0.069% -0.119% 0.010% -0.014% 0.033% -0.001% 0.031% 0.049%

REL 0.020% -0.001% -0.010% 0.039% -0.007% -0.011% 0.025% -0.036%

RIN 0.958% -1.925% 0.179% -0.013% -0.035% 0.329% 0.273% 0.762% 0.294%

RPO 0.342% -0.737% -0.124% 0.221% 0.011% 0.121% -0.112% -0.372% 0.083%

SAI 0.088% 0.015% -0.044% -0.053% -0.050% 0.030% 0.016% -0.033%

SBI -0.001% 0.000% -0.001% 0.001% 0.000% 0.000% -0.001% 0.000%

SES 0.159% 0.014% -0.289% -0.291% -0.104% -0.284% 0.029% -0.100% 0.027%

SIE 0.031% 0.037% 0.010% 0.054% -0.035% 0.032% 0.007% -0.019%

STE 0.047% 0.040% -0.081% 0.015% 0.065% 0.062% -0.072% 0.004%

SUN -0.010% -0.017% 0.018% -0.057% 0.008% 0.015% -0.011% 0.033%

TMO 0.041% 0.033% 0.009% 0.016% 0.004% 0.014% 0.041% 0.012%

TPO -0.027% 0.004% -0.001% -0.052% 0.059% 0.031% 0.121% 0.035%
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Conclusion: 

 The above summary represent what we have seen before the linear relationship and if 

we multiply them with our last return value to see how much each stock contributes in 

terms of return. This will give us the values for PC (Column level Multiplication). 

o PC1= 0.2015*-0.0016+0.078*0.0127……….....………………….………+0.1866*-0.046. 

 

 Since 37.43% of variation is explained by 1st Principal component we can pick up stock 

from that to see who is contributing to highest. In such case using filter of -0.1% and 

0.1% we can select stocks and result is as follows: 

o BHEL 

o IDFC 

o Reliance Infra 

o Reliance Power 

o Sesa Goa 

o Canara Bank 

o J.P.Associates. 

 

 Since we have selected stock using above mentioned filter further we can see how 

consistence they are across PC and which again filter them as follows : 

o BHEL 

o IDFC 

o Reliance Infra 

o Reliance Power 

o Sesa Goa 

 

 

TSL 0.052% 0.020% -0.033% -0.011% -0.009% 0.016% 0.022% -0.012%

TCS 0.006% 0.013% -0.020% 0.011% -0.019% 0.033% 0.022% 0.018%

WIP 0.023% 0.041% -0.046% 0.005% -0.079% 0.084% 0.068% 0.055%

ACC 0.001% 0.001% 0.000% 0.002% 0.000% -0.002% -0.001% 0.005%

AMB -0.014% -0.012% -0.001% -0.026% 0.001% 0.020% 0.014% -0.050%

LNT -0.086% -0.054% -0.070% 0.017% 0.048% -0.026% -0.003% 0.008%

Total 2.271% -2.424% -0.141% -0.223% -0.545% 1.103% 0.439% -0.201%

Variation 37.43% 5.32% 4.25% 3.32% 2.83% 2.52% 2.42% 2.23%


