Principal Component Analysis

Study on Indian Stock Market - Nifty 50 Stocks.

Principal Component Analysis

PCA is technique of reducing dimension, suppose we have set of n variables, A1, A2.....AN. we know the co-variance between these A variables so we construct the linear combination $\mathrm{W}=\mathrm{X} 1 \mathrm{~A} 1+\mathrm{X} 2 \mathrm{~A} 2 \ldots \mathrm{XNAN}$. The objective of this exercise is to maximize the variance of W and choose the weight of X variable so that we can determine which of them is explaining W more efficiently.

As mentioned before we are working to reduce the dimension and also trying to find out that at given point of time with less number of variable which is capable of explaining W so that we can only focus on that many parameters.

We need to understand few of mathematical terms in order to understand this process further and they are as follow:

- Standard Deviation: The standard deviation of data set is a measure of how spread out the data is. In mathematical term it is square distance of each point from its mean. Adding all this and dividing them by number of observation and square root of this number will give you Standard Deviation.
- Variance: Variance is another method of spread dataset and it's almost identical to standard deviation. Only thing is that we do not apply square root to above observation.
- Co-Variance: Standard Deviation and Variance only operates on one dimension let's say we have dataset $X\{1,2,3, \ldots ., 6\}$ and another dataset as $Y\{2,3,4,5 \ldots .44\}$ we can individually measure their Standard Deviation and Variance but if we want to measure how X \& Y vary with respect to each other and there we talk about their co-movement and that is Covariance.
- Co-Variance Matrix: We have seen that covariance in above case is between two dimensions but what about if we have more such dataset instead of just X \& Y. So when we have more such dataset we create matrix of such set and it's known to be Covariance Matrix.
- Eigen Vectors: We can multiply two matrices together provided they are of compatible sizes. Eigen Vector is special of this cases let's look at them with few example and try to understand them further.

$$
\left(\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right) \times\binom{ 1}{3}=\binom{11}{5}
$$

Principal Component Analysis

- The above example is on Non-Eigen Vector, here there is one square matrix and multiplied to vector and resultant value gives a Vector but this resultant vector is not integer multiple of original vector.

$$
\left(\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right) \times\binom{ 3}{2}=\binom{12}{8}=4 \times\binom{ 3}{2}
$$

- In this case we can see it's clearly case of Eigen Vector, since the resultant vector is 4 times the input vector.

- Properties of Eigen Vector:

- They are from the family of Square Matrices. If suppose they are of dimension 3×3 than there will be 3 Eigen Vectors.
- If you Scale the vector by some amount before multiplying it. You will get same multiple of it as a result, this is because you are not changing the direction but you are just making it longer.
- All Eigen Vectors of matrix are perpendicular (orthogonal). It'll help you to represent data in terms of perpendicular Eigen Vector instead of X \& Y axes.
- Eigen Values: This is nothing but acting as scalar multiple associated with Eigen Vector, as in above example resultant multiple got scaled up by four time of original vector.

Principal Component Analysis

PCA Introduction: PCA is also a way to identify the pattern in data and expressing data in such a way as to highlight similarities and differences. Since it becomes difficult to find out pattern in large dimension of dataset we require reducing the dimension and also at the same time don't want to lose much of information so after performing PCA we are left with limited dimension. Also, the important part of this analysis is that when we take input data they might be highly correlated and we are trying to reduce them and make component of data and this component are uncorrelated (orthogonal) to each other.

- Dataset: We will examine Nifty Fifty component so we take all Fifty stock constitute Nifty as an Index. The dataset used is from $02^{\text {nd }}$ January, 2012 to $28^{\text {th }}$ February, 2012 with price interval of 30 minutes. So in total we have 50 stocks and each stock consist of 524 data points. In order to have dataset to follow standard numbers we will do analysis on return of this dataset.
- R Code :
- Dataset to be formed and to make a standard Data Frame.

> head(data)											
	axi	baj	bha	bhe	bpc	cai	can	cip	dlf	drr	gai
	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
	-0.016467769	-0.012955596	-0.004752655	-0.012803197	-0.007647035	-0.003684425	-0.012371292	0.011034380	-0.013490930	0.002579348	0.010525729
	-0.002101577	-0.024207710	0.000000000	0.002110151	-0.000207490	-0.003698051	0.005517255	0.003086422	-0.003969384	-0.006682241	0.003097576
	0.003436648	-0.007522521	0.000865801	-0.001265556	0.000414938	0.002574004	0.006854036	0.000000000	-0.000852636	0.002400658	-0.000773495
	-0.002544531	0.001476257	-0.000577117	-0.005714906	0.000414766	-0.000642880	-0.007955055	-0.000616523	-0.006847388	0.000126191	-0.001419630
	-0.001848842	-0.034178537	-0.001733353	-0.002550480	0.005582564	-0.000965096	-0.002895955	0.004154172	0.002002003	-0.00110471	-0.007779114
	gra	hel	hdf	hbk	her	hin	hul	ici			itc
	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
	-0.004936461	-0.000768246	-0.004146834	-0.006113351	-0.008709404	-0.009034262	-0.000489716	-0.004646350	-0.012469666	-0.000561233	0.000742482
	-0.002096652	0.001152148	-0.002311249	0.001060758	-0.007633217	-0.008680610	0.000244888	-0.001936387	0.005983156	0.002532105	-0.001237777
	0.001768056	0.008408764	0.001310364	0.000235571	-0.026249081	-0.010517187	0.001101254	0.002151310	-0.003259101	0.004451781	-0.000991326
	0.001047024	0.000507357	-0.007422332	-0.002594341	0.006196724	-0.006629859	0.000611284	-0.001792436	0.000543922	0.000593274	-0.000496032
	-0.002773927	-0.002412240	-0.000388093	-0.003667124	-0.011685106	0.000000000	-0.002447383	-0.00684071	-0.002722572	-0.00197895	0.003728102
	jin	jpa	kot	m	mar	ntp	ong				co
	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
	-0.011001211	-0.010382349	-0.017908113	-0.009689158	0.000377308	-0.002487563	-0.000793179	-0.011155703	0.002506895	-0.006281196	-0.008547061
	0.003092558	-0.000949217	0.004862150	-0.007511978	0.002368394	-0.003742986	-0.000198393	-0.001452817	-0.002506895	0.005544276	0.005706150
	-0.005307399	0.004737100	-0.000828451	-0.003520098	0.002148229	-0.003129893	0.006920443	-0.004769484	0.000000000	0.001350605	0.000000000
	-0.006450918	-0.004737100	0.002601397	-0.000881964	-0.005109598	-0.001882649	-0.001380262	-0.003992021	-0.002010051	0.012195273	0.001421464
	-0.004697470	-0.000950119	-0.012835926	-0.002945510	0.000808516	0.000941767	-0.001579779	-0.004008021	-0.001006543	-0.006322978	-0.009275842
	rel	rin		1	sbi	ses	sie	ste			
	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
	-0.004834362	-0.006993035	-0.004907125	-0.003085470	-0.002115152	-0.009047012	-0.001021571	-0.011459880	-0.014037090	-0.007137005	0.005724114
	0.001708915	-0.009843611	0.004207580	-0.001236859	-0.002400512	0.002503914	-0.001494945	0.001645188	0.004363496	-0.000826788	-0.001142205
	0.002912658	-0.003401615	-0.002803085	0.001236859	0.002120230	-0.003758226	-0.001260637	0.001095290	-0.001114432	-0.002484473	0.010233176
	-0.001917138	-0.002076228	-0.002107482	-0.006199648	-0.000810146	-0.032852580	-0.000078800	-0.016000341	0.000304059	-0.002213615	-0.005672165
	-0.003559990	-0.019942186	-0.007765659	-0.015669390	-0.000530066	-0.000648719	-0.000946596	-0.002227172	-0.000709615	-0.002773927	-0.003418807
	tsl	tcs	wip	acc	amb	lnt					
	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000					
	-0.002812941	0.003522492	-0.007003530	-0.005821149	-0.016134587	-0.006160592					
	-0.000148269	0.005132603	0.006878896	0.000442184	0.001300390	-0.002045348					
	-0.000593296	0.004681856	0.001992281	0.001104606	0.000000000	0.002742802					
	-0.011940440	0.000976169	-0.002615683	0.001941149	0.002919710	-0.001744549					
	-0.003459430	-0.002931370	-0.001747597	-0.006012131	-0.002270149	-0.001747597					

Principal Component Analysis

- Since everything is in order and put into one data frame it's time to run PCA on given data frame. In R there are two different commands for PCA prcomp () and princomp (). We are using prcomp () and get summary as mentioned below.

```
> pca<-prcomp(data) % do a aca
> sumaryy(pca)
Irgortance of corronenens:
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15
Standard deviation 0.02833 0.01068 0.00955 0.008443 0.007787 0.007554 0.007203 0.006914 0,006888 0.006632 0.006186 0.006663 0.006047 0.055811 0.00567
Proportion of Variance 0.37425 0.05317 0.04253 0.033240 0.028280 0.0252220 0.024190 0.022230 0.021870 0.020510 0.017850 0.017710 0.0017550 0.015750 0.01499
```



```
PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 PC25
Stanndard deviation 0,00552 0.005518 0,005388 0,05222 0,005139 0,005664 0,004938 0.008841 0,004799 0,004731 0,004577 0,00441 0.003317 0,004207
Proportion of Variance 0.014530 0.014200 0.0013340 0.012710 0.012320 0.0011960 0.011370 0.010930 0.010740 0.010440 0.00970 0.00907 0.008600 0.008250
Cumulaltive Proportion 0.743220 0.157610 0.7700550 0.783660 0.755880 0.807940 0.819310 0.880240 0.884088 0.885410 0.861180 0.87025 0.878940 0.888190
PC30 PC31 PC32 PC33 PC34 PC35 PC36 PC37 PC38 PC39 PC40 PC41 PC42 PC43
Stanndrd deviation 0.004147 0.004081 0,003979 0.00324 0.003842 0.003698 0.003657 0.003629 0.00360 0.003465 0.003224 0.03309 0.003259 0.003155
Proportion of Variance 0.008220 0.007760 0.007380 0.007180 0.006880 0.006380 0.006240 0.006140 0.00604 0.005600 0.005470 0.005100 0.004550 0.009640
```



```
PC44 PC45 PC46 PC47 PC48 PC49 PC50
Standard deviation 0.003440 0.00305 0,002958 0,002752 0.002642 0.002438 0,002349
Proportion of Variance 0.004600 0.004210 0.000480 0.003530 0.03255 0.002770 0.002570
Cumulative Proportion 0.979580 0.983790 0.987870 0.991400 0.994650 0.997430 1.000000
```

- We can also analyze standard deviation of each component. The standard deviation of component is stored in a named element called "sdev" of the output variable made by prompt()

```
> pca{sdev
[1] 0.028830357 0.010678094 0.000550572 0.008443977 0.0077877333 0.007354457 0.007203057 0.006913715 0.006888416 0.006632094 0.006186295 0.006162892
[13] 0,006046866 0,005810900 0,005669888 0,005581548 0,005517806 0,005347973 0,005221628 0,005139436 0,005063774 0,0009983394 0,0008811324 0,009798857
[25] 0.004730620 0.004577128 0,004009911 0,004316621 0.004206553 0.0041470066 0,004080708 0,003979123 0.0033242866 0,003841931 0,003698009 0,0036557357
[37] 0,0036222311 0,003599819 0,003465205 0,003224375 0,003308518 0,003258514 0,003155222 0,003140318 0,003006610 0,002958247 0,002752459 0,002641542
[49] 0,002438407 0,002348864
```


Principal Component Analysis

- In order to decide how many component to be retained, it is common to summarize the result in term of scree plot, which we can do using R "screeplot ()" function.
- Screeplot(pca, type="lines")

The above screeplot shows very high variation for $1^{\text {st }}$ and $2^{\text {nd }}$ component and then after decay as component progress further. It helps us to decide upon how many components needed. As we can see above plot becomes very steep after decaying from $8^{\text {th }}$ point onward.

Principal Component Analysis

> pcasrotation [, 1:8]								
	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8
axi	0.20158279	0.136362181	0.213680051	-0.072466576	0.081633481	-0.084947666	0.067294105	-0.040739055
baj	0.07849545	0.062380135	-0.007897118	0.188342057	-0.196781005	-0.159197931	0.135382618	-0.063490067
bha	0.09141093	0.035054841	0.003645719	0.065591876	0.045871278	-0.287043484	-0.326637781	0.291767999
bhe	0.17597536	0.083931496	0.309179278	-0.338127795	-0.299498188	0.278254107	-0.286134729	-0.048038767
bpc	0.04972989	-0.015172923	0.019010001	0.270196773	0.284568526	-0.028030705	0.050169534	-0.290891738
cai	0.06890459	-0.014215044	-0.043399974	0.124885977	-0.303449359	0.134659510	0.081660284	-0.217484807
can	0.17634302	0.095292576	0.130608704	-0.003843119	0.177227715	0.005141722	0.038424148	-0.059208242
cip	0.04723816	0.001475693	-0.018657120	0.148250649	-0.091061775	-0.021243887	-0.029903248	-0.073745544
dlf	0.20774736	0.048333274	0.023793640	-0.004715279	0.054584279	-0.050611693	0.033948797	0.200329890
drr	0.02425967	-0.015288565	-0.023851393	0.111409149	0.013667987	-0.078851783	-0.014955582	-0.081718172
gai	0.05759542	-0.024147801	-0.067657712	0.114094802	0.029807239	-0.079474147	-0.041174893	0.061141077
gra	0.05664522	0.058624930	-0.009133670	0.173236966	-0.050250702	-0.079046924	0.017189795	0.099304436
hcl	0.04909828	0.039801312	-0.048866886	0.073864834	-0.165551859	0.234159440	0.082204298	0.007188448
hdf	0.04969713	0.033611592	0.075718587	0.068145592	0.059427530	-0.028758779	0.015797597	-0.066412408
hbk	0.09094204	0.020354113	0.028934821	0.140796630	0.062768222	-0.048659459	0.015296359	-0.062516060
h	0.08208523	0.061196339	0.031324779	0.124429673	-0.163294692	-0.183485980	0.256911939	-0.105931363
hin	0.21925698	0.175494294	-0.290503029	0.038401325	0.281938639	0.135338028	0.114193421	0.015262718
h	0.04477554	0.054098436	-0.006599584	0.121727590	-0.009853633	-0.022620375	0.008425518	0.008403293
ici	0.14396886	0.117715346	0.146366385	-0.057895327	0.055905675	-0.033149912	0.077699309	0.042299725
id	0.18143652	0.092839701	0.206567198	-0.183493964	0.290830732	0.095462377	-0.118533654	-0.305665086
inf	0.03305164	0.045713732	-0.107696626	0.048865138	-0.159366058	0.264718441	0.079502712	0.101145526
itc	0.01474017	0.051767048	-0.021963719	0.112277249	-0.034685887	-0.002613364	0.037838587	-0.012335359
jin	0.13855009	-0.002570891	0.015748941	-0.008730818	-0.224164427	0.054032863	-0.083789138	0.004594217
jpa	0.23987855	0.038857710	0.098352738	-0.016802282	-0.035454286	0.108972199	-0.001899589	0.235631257
kot	0.14600386	0.038963551	0.164453229	0.104493759	0.036538162	-0.129047519	0.120863228	-0.046829331
mnm	0.11581830	0.099933393	-0.029132253	0.051921919	-0.110394556	-0.069467695	0.043559492	0.115287263
mar	0.10281134	0.067590563	0.009495376	0.123997762	-0.049751953	0.026214827	0.128480340	0.019892686
ntp	0.07982801	-0.010521656	0.011938531	0.055888260	-0.022040763	0.019924570	-0.161726174	-0.010768929
ong	0.05308709	0.023613557	0.037083135	0.098934860	-0.046616894	0.067140325	-0.094584827	-0.142312598
pr	0.16035121	0.093121083	0.234785404	-0.001525400	0.011303632	-0.103048305	0.053660049	-0.046833319
pow	0.07069259	0.020964304	-0.039279423	0.096279990	-0.042448630	-0.068206969	-0.040486107	-0.018562831
	0.06453054	0.025502836	0.206930717	0.091509414	-0.029075217	-0.081339216	-0.008377481	0.002391541
rco	0.26263268	-0.454309029	0.038060446	-0.052188319	0.125235758	-0.001945091	0.116729369	0.186275909
rel	0.09715646	-0.004545757	-0.046204878	0.184978016	-0.033424243	-0.054178136	0.116759113	-0.171727556
rin	0.25947039	-0.521630288	0.048608480	-0.003403994	-0.009554161	0.089078619	0.074068269	0.206497051
rpo	0.23405257	-0.504694048	-0.084620181	0.151121373	0.007333114	0.082753910	-0.076969758	-0.254757722
sai	0.19696832	0.033822047	-0.098456752	-0.118873643	-0.112911999	0.067843349	0.035101990	-0.073365309
sbi	0.17130056	0.085165018	0.177511757	-0.119176073	0.102322341	-0.056553089	0.137897745	-0.032758845
ses	0.26784344	0.023159475	-0.486234981	-0.489427011	-0.174202557	-0.477321849	0.048817743	-0.168224664
sie	0.07072898	0.085439834	0.022329496	0.124217127	-0.080757950	0.074524696	0.015763108	-0.044243999
ste	0.22951477	0.194752679	-0.395398283	0.073476701	0.318905574	0.300324052	-0.348991576	0.017991092
sun	0.03699518	0.062457812	-0.064541596	0.202354599	-0.028126097	-0.055110779	0.038867623	-0.116162157
tmo	0.14954619	0.123063475	0.034912832	0.058605277	0.015678122	0.050153735	0.149836855	0.045331127
tpo	0.12471273	-0.019725426	0.006210675	0.234759202	-0.269915628	-0.141087904	-0.549964101	-0.157829532
tsl	0.19847895	0.076250128	-0.125736078	-0.040927839	-0.034193710	0.061524065	0.083922249	-0.046595638
tcs	0.04281656	0.091638981	-0.145291314	0.077912682	-0.134941684	0.232831231	0.156937320	0.126919701
wip	0.05256595	0.091413346	-0.103537309	0.012127444	-0.178494677	0.189308081	0.152905469	0.123538560
acc	0.08258197	0.087579702	0.010566632	0.124700814	0.022402536	-0.150319736	-0.079607746	0.307048393
amb	0.09485353	0.081593583	0.009684844	0.168020293	-0.006176252	-0.134636534	-0.092311724	0.329229490
lnt	0.18669640	0.116397118	0.151409010	-0.036122031	-0.103371951	0.056478417	0.007393083	-0.018131927

- The next step is to see loadings for principal components, they are stored in named element "rotation" of the variable returned by "prcomp ()". This contain matrix with the loadings of each component. We'll see first eight components as it explain 60% variation as we have observed before in "summary (pca)".
- Now let's look at first component PC1 which explain in term of linear relation as follow.

PC1 $=0.20158279^{*}$ axi $+0.0784954^{*}$ baj $+0.18669640^{*} \ln$.

- Note that the square of loadings sum to 1 , as this is a constraint used in calculating loadings. >sum((pca\$rotation[,1])^2)
- [1] 1

Principal Component Analysis

Stock	PC 1	PC 2	PC 3	PC 4	PC 5	PC 6	PC 7	PC 8	Stock
AXI	-0.032\%	-0.022\%	-0.034\%	0.012\%	-0.013\%	0.014\%	-0.011\%	0.007\%	
BAJ	0.100\%	0.079\%	-0.010\%	0.239\%	-0.250\%	-0.202\%	0.172\%	-0.081\%	
BHA	-0.013\%	-0.005\%	-0.001\%	-0.009\%	-0.007\%	0.041\%	0.047\%	-0.042\%	
BHE	0.177\%	0.084\%	0.310\%	-0.339\%	-0.300\%	0.279\%	-0.287\%	-0.048\%	0.063\%
BPC	0.023\%	-0.007\%	0.009\%	0.127\%	0.134\%	-0.013\%	0.024\%	-0.137\%	
CAI	0.052\%	-0.011\%	-0.033\%	0.095\%	-0.231\%	0.102\%	0.062\%	-0.165\%	
CAN	0.107\%	0.058\%	0.079\%	-0.002\%	0.107\%	0.003\%	0.023\%	-0.036\%	0.049\%
CIP	-0.011\%	0.000\%	0.004\%	-0.034\%	0.021\%	0.005\%	0.007\%	0.017\%	
DLF	0.050\%	0.012\%	0.006\%	-0.001\%	0.013\%	-0.012\%	0.008\%	0.048\%	
DRR	0.005\%	-0.003\%	-0.005\%	0.023\%	0.003\%	-0.016\%	-0.003\%	-0.017\%	
GAI	0.003\%	-0.001\%	-0.004\%	0.006\%	0.002\%	-0.004\%	-0.002\%	0.003\%	
GRA	-0.024\%	-0.025\%	0.004\%	-0.075\%	0.022\%	0.034\%	-0.007\%	-0.043\%	
HCL	0.021\%	0.017\%	-0.021\%	0.032\%	-0.071\%	0.101\%	0.035\%	0.003\%	
HDF	0.004\%	0.003\%	0.006\%	0.006\%	0.005\%	-0.002\%	0.001\%	-0.005\%	
HBK	0.023\%	0.005\%	0.007\%	0.035\%	0.016\%	-0.012\%	0.004\%	-0.016\%	
HER	0.016\%	0.012\%	0.006\%	0.024\%	-0.032\%	-0.036\%	0.051\%	-0.021\%	
HIN	-0.007\%	-0.006\%	0.010\%	-0.001\%	-0.009\%	-0.005\%	-0.004\%	-0.001\%	
HUL	-0.003\%	-0.004\%	0.001\%	-0.009\%	0.001\%	0.002\%	-0.001\%	-0.001\%	
ICI	-0.024\%	-0.020\%	-0.025\%	0.010\%	-0.009\%	0.006\%	-0.013\%	-0.007\%	
IDF	0.160\%	0.082\%	0.182\%	-0.162\%	0.257\%	0.084\%	-0.105\%	-0.270\%	0.067\%
INF	0.015\%	0.021\%	-0.050\%	0.023\%	-0.074\%	0.123\%	0.037\%	0.047\%	
ITC	-0.002\%	-0.008\%	0.004\%	-0.018\%	0.006\%	0.000\%	-0.006\%	0.002\%	
JIN	-0.018\%	0.000\%	-0.002\%	0.001\%	0.030\%	-0.007\%	0.011\%	-0.001\%	
JPA	0.110\%	0.018\%	0.045\%	-0.008\%	-0.016\%	0.050\%	-0.001\%	0.108\%	0.047\%
KOT	-0.099\%	-0.026\%	-0.111\%	-0.071\%	-0.025\%	0.087\%	-0.082\%	0.032\%	
MNM	0.011\%	0.010\%	-0.003\%	0.005\%	-0.011\%	-0.007\%	0.004\%	0.011\%	
MAR	0.007\%	0.005\%	0.001\%	0.009\%	-0.003\%	0.002\%	0.009\%	0.001\%	
NTP	0.000\%	0.000\%	0.000\%	0.000\%	0.000\%	0.000\%	0.000\%	0.000\%	
ONG	-0.008\%	-0.004\%	-0.006\%	-0.016\%	0.007\%	-0.011\%	0.015\%	0.023\%	
PNB	-0.074\%	-0.043\%	-0.108	0.001\%	-0.005\%	0.047\%	-0.025\%	0.022\%	
POW	-0.019\%	-0.006\%	0.010	-0.026\%	0.011\%	0.018\%	0.011\%	0.005\%	
RAN	0.025\%	0.010\%	0.081\%	0.036\%	-0.011\%	-0.032\%	-0.003\%	0.001\%	
RCO	0.069\%	-0.119\%	0.010\%	-0.014\%	0.033\%	-0.001\%	0.031\%	0.049\%	
REL	0.020\%	-0.001\%	-0.010\%	0.039\%	-0.007\%	-0.011\%	0.025\%	-0.036\%	
RIN	0.958\%	-1.925\%	0.179\%	-0.013\%	-0.035\%	0.329\%	0.273\%	0.762\%	0.294\%
RPO	0.342\%	-0.737\%	-0.124\%	0.221\%	0.011\%	0.121\%	-0.112\%	-0.372\%	0.083\%
SAI	0.088\%	0.015\%	-0.044\%	-0.053\%	-0.050\%	0.030\%	0.016\%	-0.033\%	
SBI	-0.001\%	0.000\%	-0.001\%	0.001\%	0.000\%	0.000\%	-0.001\%	0.000\%	
SES	0.159\%	0.014\%	-0.289\%	-0.291\%	-0.104\%	-0.284\%	0.029\%	-0.100\%	0.027\%
SIE	0.031\%	0.037\%	0.010\%	0.054\%	-0.035\%	0.032\%	0.007\%	-0.019\%	
STE	0.047\%	0.040\%	-0.081\%	0.015\%	0.065\%	0.062\%	-0.072\%	0.004\%	
SUN	-0.010\%	-0.017\%	0.018\%	-0.057\%	0.008\%	0.015\%	-0.011\%	0.033\%	
TMO	0.041\%	0.033\%	0.009\%	0.016\%	0.004\%	0.014\%	0.041\%	0.012\%	
TPO	-0.027\%	0.004\%	-0.001\%	-0.052\%	0.059\%	0.031\%	0.121\%	0.035\%	

Principal Component Analysis

TSL	0.052%	0.020%	-0.033%	-0.011%	-0.009%	0.016%	0.022%	-0.012%
TCS	0.006%	0.013%	-0.020%	0.011%	-0.019%	0.033%	0.022%	0.018%
WIP	0.023%	0.041%	-0.046%	0.005%	-0.079%	0.084%	0.068%	0.055%
ACC	0.001%	0.001%	0.000%	0.002%	0.000%	-0.002%	-0.001%	0.005%
AMB	-0.014%	-0.012%	-0.001%	-0.026%	0.001%	0.020%	0.014%	-0.050%
LNT	-0.086%	-0.054%	-0.070%	0.017%	0.048%	-0.026%	-0.003%	0.008%
Total	2.271%	-2.424%	-0.141%	-0.223%	-0.545%	1.103%	0.439%	-0.201%
Variation	37.43%	5.32%	4.25%	3.32%	2.83%	2.52%	2.42%	2.23%

Conclusion:

- The above summary represent what we have seen before the linear relationship and if we multiply them with our last return value to see how much each stock contributes in terms of return. This will give us the values for PC (Column level Multiplication).
- $\mathrm{PC} 1=0.2015^{*}-0.0016+0.078^{*} 0.0127$. $+0.1866^{*}-0.046$
- Since 37.43% of variation is explained by $1^{\text {st }}$ Principal component we can pick up stock from that to see who is contributing to highest. In such case using filter of -0.1% and 0.1% we can select stocks and result is as follows:
- BHEL
- IDFC
- Reliance Infra
- Reliance Power
- Sesa Goa
- Canara Bank
- J.P.Associates.
- Since we have selected stock using above mentioned filter further we can see how consistence they are across PC and which again filter them as follows :
- BHEL
- IDFC
- Reliance Infra
- Reliance Power
- Sesa Goa

