Understanding of the structure of a daily .ntd file created by NinjaTrader

Illustration with the example of AAPL in 2014

This is fully based on the work done by @mrjoe, @gomi and @dalebru who decoded .ntf file structure in
https://www.bigmiketrading.com/ninjatrader-programming/7396-ntd-file-specification.html Thanks to them!

On my computer, NinjaTrader stores the 2014 quotes of AAPL in the following file:
C: \Users\Nicolas\Documents\NinjaTrader 7\db\day\AAPL\2014.Last.ntd
The beginning of the file is the following:
7b 14 ae 47 e1 7a 84 bf 02000000 5b 000000 3d 0a d7 a3 70 5d 81400 a d7 a3 70 3d 688140 5c
$8 f$ c2 f5 28408140 d7 a3 70 3d 0a 4981400080 d3 b6 64 d5 d0 0803288000000000007891
3e e6 5404 db 3700 d6 491279 a2 0339 fb 03 a7 0181040900 e1 4e 19789142 af a4 0280 d4
00 ad 26527862 3d d9 02 a3 0c 01 dd 00 8d $017 b 789143$ 1f 06047975009861997891 3d 47
610368 b7 00 a6 5d a8 796203 3c 2004 eb 03024900 ce c7 bd $7862433 f 035338036900$ b6
86 c5 786245 fa 02 9c ba 02 3a 00 d6 a7 3d 789240 8a c3 $01420101007 d 470 \mathrm{e} 7891$ 3e aa 3b
0486

As further explained below:

- the green part corresponds to the first bar of the year
- the red part corresponds to the second bar
- the violet part corresponds to the third bar
- and so on...

Detailed structure of the daily .ntd file is as follows:

Hexadecimal sequences	Field	Nb of byte(s)	Endian- ness (1)	Type	Value (2)

First record:

(its structure is different from the subsequent ones)

7b 14 ae 47 e1 7a 84 bf	tick size (its opposite)	8	LE	IEEE754 double precision $64-b i t$	0xbf847ae147ae147b $=-0.01$
02000000	(skipped)	4			
5b 000000	nb of records	4	LE	unsigned integer	$0 x 5 b=91$
3d 0a d7 a3 70 5d 81 40	open	8	LE	IEEE754 double precision 64-bit	$0 x 40815 d 70 a 3 d 70 a 3 d$ $=555.68$

Hexadecimal sequences	Field	Nb of byte(s)	Endianness (1)	Type	Value (2)
$\begin{aligned} & \text { 0a d7 a3 } 70 \text { 3d } \\ & 688140 \end{aligned}$	high	8	LE	IEEE754 double precision 64-bit	$\begin{aligned} & \text { 0x4081683d70a3d70a } \\ & =557.03 \end{aligned}$
5c 8f c2 f5 2840 8140	Iow	8	LE	IEEE754 double precision 64-bit	$\begin{aligned} & 0 \times 40814028 f 5 \mathrm{c} 28 \mathrm{f} 5 \mathrm{c} \\ & =552.02 \end{aligned}$
$\begin{aligned} & \text { d7 a3 } 70 \text { 3d 0a } \\ & 498140 \end{aligned}$	close	8	LE	IEEE754 double precision 64-bit	$\begin{aligned} & \text { 0x4081490a3d70a3d7 } \\ & =553.13 \end{aligned}$
0080 d3 b6 64 d5 d0 08	date, expressed as 10 millionth of a second since Jan. $1^{\text {st }}, 0001$	8	LE	unsigned integer	$\begin{aligned} & 0 x 08 d 0 d 564 b 6 d 38000 \\ & = \\ & 635242176000000000 \\ & =\text { Jan. } \mathbf{2}^{\text {nd }}, \mathbf{2 0 1 4} \end{aligned}$
$\begin{aligned} & 0328800000 \\ & 000000 \end{aligned}$	volume	8	LE	unsigned integer	$\begin{aligned} & 0 \times 0000000000802803 \\ & =8,398,851 \end{aligned}$

Second record:

(subsequent records have the same structure)

$78=01111000$ (3)	mask 1	1			

Meaning of mask 1 (after conversion to binary):
Bit 1 (" 0 ") is ignored.
Bits 2 to 4 (" 111 ") specify the number of bytes used to store volume:

- 001: 1 byte
- 011: 1 byte, but volume to be multiplied by 100
- 011: 1 byte, but volume to be multiplied by 500
- 101: 1 byte, but volume to be multiplied by 1000
- 110: 2 bytes
- 111: 4 bytes
- 010: 8 bytes

Bits 5 and 6 (" 10 ") specify the number of bytes used to store the open price:

- 00: 0 byte (no field)
- 01: 1 bytes
- 10: 2 bytes
- 11: 4 bytes

Bits 7 and 8 (" 00 ") specify the number of bytes used to store the delta time:

- $00: 0$ byte (no field)
- 01: 1 byte
- 10: 2 bytes
- 11: 4 bytes

Hexadecimal sequences	Field	Nb of byte(s)	Endianness (1)	Type	Value (2)
$91=10010001$ (3)	mask 2	1			
	Meaning o Bits 1 and - 01 - 10 - 11 Bits 3 and - 01 - 10 - 11 Bits 5 and Bits 7 and - 01 - 10 - 11	mask 2 ("10") 1 byte 2 bytes 4 bytes ("01") 1 byte 2 bytes 4 bytes are not ("01") 1 byte 2 bytes 4 bytes	after con ecify the ecify the sed ecify the	ersion to binary): number of bytes u number of bytes u number of bytes u	e the low: e the high: e the close:
(void)	delta time = number of days since previous record (void=1 day)	(specified by mask 1)	BE	unsigned integer	date $=$ the day after previous record
3 e e6	open delta	(specified by mask 1)	BE	unsigned integer	$0 \times 3 e e 6=16102$ from which we can calculate the open

The following number shall be subtracted from open delta:

- if stored on 1 byte: $0 \times 80=128$
- if stored on 2 bytes: $0 \times 4000=16384$
- if stored on 4 bytes: $0 \times 40000000=1073741824$

The result is the difference in ticks between the open and the open of the day before.

	high delta nb of ticks between high and open	(speci- fied by mask 2)	BE	unsigned integer	$0 \times 54=84$ from which we can calculate the high
04 db	low delta =nb of ticks between low and open	(speci- fied by mask 2)	BE	unsigned integer	$0 \times 04 \mathrm{db}=1243$ from which we can calculate the low

Hexadecimal sequences	Field	Nb of byte(s)	Endian- ness (1)	Type	Value (2)
37	close delta nb of ticks between low and close	(speci- fied by mask 2)	BE	unsigned integer	$0 \times 37=55$ from which we can calculate the close
00 d6 49 12	volume	(speci- fied by mask 1)	BE	unsigned integer	$0 \times 00 \mathrm{~d} 64912=$ $\mathbf{1 4 , 0 4 3 , 4 1 0}$

Third record:

(same structure as second record)

$79 . .$.					

Notes:

(1) Refer to http://fr.wikipedia.org/wiki/Endianness
(2) Conversions can be checked on the following web sites:

- from hexadecimal to unsigned integer: http://www.binaryhexconverter.com/hex-to-decimalconverter
- from hexadecimal to IEEE754 double precision 64-bit: http://www.binaryconvert.com/convert double.html
(3) Conversion of hexadecimal to binary: http://easycalculation.com/hex-converter.php

