
A comparative study on four automated stock-trading agents

Hongwei Li∗ Menglin Chen†

The Hong Kong University of Science and Technology
Jun Yang ‡

Abstract

Trading algorithm is for long being a hot spot of computer science
where people cast many energy and money onto. In this project
report, we implemented three existing trading algorithm plus one
of our improved ones and evaluated their performance under dif-
ferent patterns of stock price trends with returns and Sharpe ratio.
However, the objective of this project is not about coming up with
a champion trading strategy but aiming at how to compare these
strategies through an analytical way, which benefits later research.

Keywords: trading algorithm, e-commerce, algorithm evaluation

1 Introduction

The advances in computer science magnificently change the way
how ordinary equity trading works. Telephone and fax are soon re-
placed by the modernized computers, and the entire trading process
is migrated into a so-called electronic fashion. This greatly acceler-
ates the market efficiency and increases the volume of equity flow-
ing around in every seconds. On the other hand, computers not only
play an aide tool next to human traders, but sometimes, as many
computer scientist hopes, can manage the trading itself, placing or
withdrawing the orders and most importantly locking the profits.
It is no doubt that with its computation power, computer can be
smart enough to win over human traders if it is programmed with
an algorithm, which realizes the principles of the market and pre-
dicts the future price precisely. The burden of looking for such a
dreaming algorithm is shed onto our computer scientist, whether
this algorithm or even a math model does exist, and if the algorithm
is doable.

It has been a long time since the trading algorithm became the one
of most active research areas in the computer science. One reason
for its popularity undoubtedly is because this problem is the most
rewarding one among all computer science problems. A competent
algorithm is at fact a key to the door of an invaluable treasure. How-
ever people badly pore over this problem thousands of days and
nights, and cast tons of cash upon it, still there is no really working
algorithm which can prove itself in the real world.At least, to our
best knowledge, there is not. Probably we are wrong, but surely
if there is, the inventor must have not disclosed the algorithm and
hence is able to enjoy the proceeds somewhere and somehow.

The algorithms published in the academic domain, though not

∗e-mail: lihw@cse.ust.hk
†e-mail:menglin@cse.ust.hk
‡yjrobin@cse.ust.hk

tough enough, but are significant in the scope of research, for they
have carried out the computation theories into real practice. Prior
research includes a variety of approaches in the stock trading. Re-
inforcement learning has be studied in [Chan and Shelton 2001]
and future employed in the automated trading algorithm in [Sher-
stov and Stone 2004]. Other approaches, like market-making [Sher-
stov and Stone 2004; Chan and Shelton 2001], reverse strategy and
VWAP [Yu and Stone 2003; Feng et al. 2004] had proved their ca-
pability in simulating practise. An early brief overview of trading
algorithms can be found in [Kearns 2004].

In this project, we have implemented three proposed algorithms,
plus one of our improved one. Nevertheless, the objective of this
project is not about the implementation detail and improvement of
the current algorithms, but to conduct an empirical analysis of these
algorithms by comparing their performance in the same environ-
ment. The adopted grading criteria is the Sharpe ratio, a reliable
measure of ”the statistical significance of earnings and the trade-off
between risk and return” [Kearns and Ortiz 2003]. It is computed by
empirical daily average of returns divided by the standard deviation,
a quantity most modern fund manager seek to maximize [Moody
and Saffell 2001].

2 Overview

The subjects of our study contain four algorithms and the historical
prices of stocks traded at the Shanghai Stock Exchange. We used
minute-based series stock data, each of whose entry includes time
(in the format of YY-MM-DD-HH-MM), price, and volume in that
minute.

The reason for choosing the minute-based price data is we can focus
on the short-term profit of the stock. As the time span gets larger,
the more unknown and out-of-control influence is likely to walk in,
like rumors, bad/good business performance of the company, which
will largely determines the stock prices, instead of market trading
activities. And the pattern of the long-term stock price tends to
be monotonic increase/decrease, which benefits the most primitive
buy-and-hold strategy, and turn other algorithms down. In sum-
mary, We do not think long-term evaluation is either simple or in-
teresting to do in the scope of a course project.

We allow each simulator (the agent equipped with the trading al-
gorithm) to perform three operations, buying, selling and short-
ing a particular stock with certain volume (constrained to an upper
bound). To simplify the algorithm, the cash and stock holding bal-
ance of the simulator can be negative, that means, in the terms of
purchase, simulator can borrow money without any interest during
the simulation for purchasing any number of stocks it likes. This
loan will be deduced from the total value of the simulator at the
end of the simulation. Correspondingly, simulator can also borrow
any number of stocks to sell as long as it returns the same amount
of stock at the end. The current total value of the simulator can be
described as following.

total value = cash + holdings * current stock price

We evaluate the performance of trading algorithms with Sharpe ra-
tio by dividing the average return of each simulator with the stan-
dard deviation.



3 The Trading Algorithms

The algorithms we are implemented and studied are Market-
marking strategy, Reverse market-making strategy [Feng et al.
2004], Trend-following strategy based on regression-based price
prediction [Sherstov and Stone 2004] and our Improved trending-
following strategy.

3.1 Market-making strategy

The market-making algorithm exploits the volatility of the stock
price. During a certain period, this algorithm assumes the stock
price will fluctuate around a certain price axis. Without the predica-
tion of future price movement, it follows a simple strategy, putting
a pair of buy and sell orders of the same volume on a single stock
simultaneously. The price of buy order is likely lower than the cur-
rent price, while the price of the sell order will be higher. Whenever
the stock price goes up above the sell order’s price or drops down
below the buy order prices, the orders are executed and profits is
locked as long as the balance of sell and buy orders are maintained.

The crucial problem of this strategy is how to define the put and
call price. If the put and call price are far away from current stock
price, it is unlikely that the orders will be matched and all efforts
end up in vain. A natural choice is to add a little margin to the
order price. For example, we can set the buy price 0.02 lower than
the current price and symmetrically set the sell price 0.02 higher.
Another issue is the volume of the order. To avoid the influence of
the order on the market, we usually set an upper limit for the volume
of order, namely 2000. Thus, intervene effect brought up by our
virtual trading activity is small enough to be ignored and historical
stock price is still reliable to be the estimation basis. Algorithm 1
describes the algorithm in a pseudo-code manner.

Algorithm 1 Market Making Strategy

while time permits do
buyReferencePrice← getBuyOrderPrice(n) + 0.001;
placeOrder(BUY, buyReferencePrice, volume);
sellReferecePrice← getSellOrderPrice(n) - 0.001;
placeOrder(SELL, sellReferencePrice, volume);

end while

The above naive algorithm can be improved future when taking the
holding position into account. For example, when we are at large
positive holding, we may lower the price of sell orders such that it
can be more likely met than buy orders and thus alleviate our large
holding problem. Algorithm 2 illustrates this idea.

priceEncouragement and volAlteration can be different from
stock to stock. In our experiment, we set priceEncouragement
to be 0.0001, volAlteration to be 0.001 and volume to be 100
shares. It is worthy to note that the placed order will not be exe-
cuted at once. To address this problem, the program maintains an
order buffer caching all not-yet-executed orders. Every time the
simulator receives a stock price, it checks the buffer and execute
all cached orders which meet the current price. The completed or
starved (older than one day) orders will wiped out from buffer im-
mediately once noticed.

3.2 The Reverse Strategy

The reverse strategy flips the strategy of Market-making algorithm,
that is when stock prices goes up, it issues the sell order and when
price goes down, it issues the buy order. The reason that re-
verse strategy makes profits, as the author argues, is because that
”stock market prices are not constant and in fact undergo frequency

Algorithm 2 Improved Market Making Strategy

while time permits do
buyReferencePrice← getBuyOrderPrice(n) + 0.001;
sellReferecePrice← getSellOrderPrice(n) - 0.001;
currentPosition← getAgentCurrentPosition()
if currentPosition < 0 then

buyReferencePrice← buyReferencePrice - currentPosition
* priceEncouragement

else if currentPosition > 0 then
sellReferencePrice← sellReferencePrice - currentPosition
* priceEncouragement

end if
buyVolume← volume * (1 - currentPosition * volAlteration)
sellVolume← volume * (1 + currentPosition * volAlteration)
placeOrder(BUY, buyReferencePrice, buyVolume);
placeOrder(SELL, sellREferencePrice, sellVolume);

end while

changes in direction, rather than moving consistently in one direc-
tion”. [Yu and Stone 2003]. The algorithm is nothing different but
changes the position of two order actions in the Algorithm 2;see
Algorithm 3, so we do not bother listing it here. A good point of
the reverse strategy is it does not need to maintain an order buffer
as the order placed by it can be executed at once.

Algorithm 3 Reverse Market Making Strategy

while time permits do
volume← 100;
buyVolume← volume * (1-share * volAlteration);
sellVolume← volume * (1+share * volAlteration);
lastPrice← getLastPrice();
currentPrice← getCurrentPrice();
if currentPrice > lastPrice then

placeOrder(SELL, currentPrice, sellVolume);
else

placeOrder(BUY, currentPrice, buyVolume);
end if

end while

3.3 The Trend-following Strategy

The Trending-following algorithm issues the buy and sell orders by
observing the historical price trend. Basically, it puts the sell order
if the price is falling and puts the buy order if the price is rising.

The heart of the Trend-following agent is about the predication of
the price trend. It envisions the future price based on the observa-
tion of historical prices. The first and second derivatives, P ′ and
P ′′, about the price in a certain period are computed as the ba-
sic measurement of the price movement. In [Sherstov and Stone
2004], the author chose 3600 and 400 seconds to be the interval for
computing P ′ and P ′′ respectively. The pseudo-code is given in
Algorithm 4.

3.4 Our trading algorithm

The key idea of previous Trend-following algorithm is based on
equal-weighted linear regression, but this equal-weighted algorithm
is not suitable for stock market. Intuitively, the older the price is, the
less influence it imposes on today’s price. It motivates us to come
up with a more reasonable algorithm of linear regression used in
trend-following strategy. Here we proposed three methods, All of
which emphasize the impact of recent prices.



Algorithm 4 Trend Following

Require: sell-price← max{last-price, predicated-last-price}
Require: buy-price← min{last-price, predicated-last-price}

if P ′ > 0 and P ′′ > 0 then
return ”Buy 75 shares at buy-price”

else if P ′ < 0 and P ′′ < 0 then
return ”SELL 75 shares at sell-price”

end if

The first method uses linear-weight; e.g., ω = i, where i is the
number of days counting from the first day. Obviously, the latest
price will certainly have the largest weight; the second method uses
quadratic weight, e.g., i2; the third method uses exponential weight,
e.g., ei.

4 Comparison and Analysis

4.1 Individual comparison

In this comparison study, we deliberately use a set of representa-
tive minute-based daily price data to test out the performance of
the four algorithms. The representative data, we believe, have cov-
ered all the price trend patterns in the reality, the monotonic in-
crease/decrease, the obvious fluctuation, the zig-zag and mixtures
of aforementioned patterns. Figure 1 showcases the miniatures of
these price data with labels annotating different patterns. Thus, by
examining the daily returns of algorithms given different pattern of
data, we can learn the efficiency of these algorithms under different
conditions and their overall efficiencies, which can be a reasonable
estimation about how the strategy will work in the practice.

 12.8

 12.9

 13

 13.1

 13.2

 13.3

 13.4

 13.5

 13.6

 13.7

 13.8

120 240

pe
r-

m
in

ut
e 

re
tu

rn
 (

$)

time (minute)

monotonic increase

 12.4

 12.6

 12.8

 13

 13.2

 13.4

 13.6

120 240

pe
r-

m
in

ut
e 

re
tu

rn
 (

$)

time (minute)

monotonic decrease

 12.8

 12.9

 13

 13.1

 13.2

 13.3

 13.4

 13.5

120 240

pe
r-

m
in

ut
e 

re
tu

rn
 (

$)

time (minute)

large fluctuation

 12.5

 12.6

 12.7

 12.8

 12.9

 13

 13.1

 13.2

 13.3

 13.4

 13.5

120 240

pe
r-

m
in

ut
e 

re
tu

rn
 (

$)

time (minute)

zig-zag

 14.15

 14.2

 14.25

 14.3

 14.35

 14.4

 14.45

 14.5

 14.55

 14.6

 14.65

 14.7

120 240

pe
r-

m
in

ut
e 

re
tu

rn
 (

$)

time (minute)

mixture

Figure 1: Different price trend patterns.

Table 1 reports the resulting profit/loss of market-making, reverse

Final Mean STD Sharpe ratio

Market-making

Monotonic increase -223.04 -27.88 96.36 0.00073
Monotonic decrease -218 -27.25 80.03 0.00087

Large fluctuation 310 38.75 94.68 0.00074
Zig-zag 193.04 24.13 33.71 0.00208
Mixture 207.04 25.88 24.28 0.00288

Reverse market-making

Monotonic increase -205.04 -25.63 84.43 0.00083
Monotonic decrease 310 38.75 65.8 0.00106

Large fluctuation 440 55 169.17 0.00041
Zig-zag 348 43.5 26.08 0.00268
Mixture 245.04 30.63 23.8 0.00294

Trend-following

Monotonic increase 351.04 43.88 124.76 0.00056
Monotonic decrease 159.04 19.88 253.25 0.00028

Large fluctuation 38.00 4.75 315.77 0.00022
Zig-zag -1839.04 -229.88 302.79 0.00023
Mixture -616.00 -77.00 191.95 0.00036

Improved trend-following with ω = i

Monotonic increase 620 77.50 158.21 0.00046
Monotonic decrease 686 85.75 212.46 0.00033

Large fluctuation -653.04 -81.63 261.22 0.00027
Zig-zag -1573.04 -196.63 209.53 0.00033
Mixture -471.04 -58.88 148.71 0.00047

Improved trend-following with ω = i2

Monotonic increase 606.00 75.75 153.42 0.00046
Monotonic decrease 578.00 72.25 210.62 0.00033

Large fluctuation -676.00 -84.50 252.96 0.00028
Zig-zag -679.04 -84.88 230.28 0.00030
Mixture -226.00 -28.25 79.12 0.00088

Improved trend-following with ω = ei

Monotonic increase 118 14.75 66.96 0.00105
Monotonic decrease 251.04 31.38 76.98 0.00091

Large fluctuation 14 1.75 102.59 0.00068
Zig-zag 33.04 4.13 144.91 0.00048
Mixture -237.04 -29.63 31.60 0.00222

Table 1: The performance of each strategy under different price trend patterns.

market-making , trend following and our strategies in the individual
simulations on different price trend patterns. Each row in the table
gives out the final return, the average the per-half-an-hour return,
the standard deviation of per-half-an-hour return and Sharpe ratio.

Market-making strategy In our experiment, we found that
Market-making strategy is more suitable for large fluctuation pat-
tern than any other patterns in terms of Sharpe ratio. This indicates
Market-making strategy can guarantee a more stable income than
other strategies.

Reverse market-making strategy The mean profit value of this
method is always the highest, except when price is in monotonic
increase or monotonic decrease. It is because of the nature of the
algorithm itself. Basically, it assumes the stock price will bounce
back when it decreases for a certain while and it will drop down
when it keeps increasing. Correspondingly, strategy buys the stock



when the price is going down and sells in the opposite case, hoping
the stock price will turn around after a certain time. Usually market
is like this, and thus this strategy makes money. But when the price
is in monotonic increase or decrease, this method will fail to achieve
profiting and it will lose more and more if the trend continues.

Trend-following strategy In monotonic increase/decrease pat-
tern, it beats the other strategies(Our algorithm is a kind of Trend-
following strategy) thanks to its insensitivity to small price fluctu-
ation. In other scenarios, as Trend-following strategy is based on
the linear regression, which can not quickly find the peak/valley of
the price, especially after the price is increasing for a short period
of time, it definitely loses money, as shown in the zig-zag and large
fluctuation patterns.

Our strategy In fact, the three algorithms using different method
to assign the weight are reflecting the sensitivity to the price of
the strategy. One interesting phenomena we observed from the ex-
periment results, as the weight goes larger, e.g, ei, the Improved
trend-following algorithm tends to be more insensitivity to large
fluctuations, as shown in the last three rows of Table 1, though on
the other hand, it performed worse than other Trend-following with
smaller weights. And no matter which algorithm we use to do the
linear regression, trend following is always good at the monotonic
increasing scenario.

4.2 Joint comparison

Comparing to the individual comparison, this joint comparison was
using another 10 days of price data but without knowing the specific
price pattern. We were focusing on the overall profit of each strat-
egy after ten days of simulation by computing their Sharpe ratios,
rather than individual daily return. This is because, in the real trad-
ing world, a consistent albeit small profit earning strategy is more
desirable than the one with large variability, so in the this test, the
winner is the strategy with the largest Sharpe ratio.

Table 2 shows the results of per-half-an-hour returns of each strat-
egy during 10 days and Figure 2 plots the profit/loss.

Method Final Mean STD Sharpe ratio

Market-making 604.8 7.56 56.07 0.00125

Reverse market-making 1348.8 16.86 64.77 0.00108

Trend-following -1552.80 -19.41 113.81 0.00062

Advanced TF,w=i -1216.20 -15.21 115.87 0.00060

Advanced TF,w=i*i -406.40 -5.08 115.66 0.00061

Advanced TF,w=exp(i) -344.80 -4.31 37.87 0.00185

Table 2: The overall performance of each strategy during 10 days.

In conclusion, Market-making is the strategy with highest Sharpe
ratio in this experiment; the runner-up is Reverse market-making
strategy; then follows Advanced Trend-following strategy with
weight as ω = ei. By taking the average return into account, we
think that Reverse market-making is the best trading algorithm due
to our experiment result.

The reason that the Reverse market-making strategy outperforms
other algorithms in the join comparison, is that the algorithm is truly
tailor for the usual behavior of the practical markets. Though sim-
ple, it is elegant yet effective. For future works, we are consider to
shoot up more rigorous and careful evaluation for Reverser market-
making to help identifying (there must be some) some weakness of
it and see if we can fill the hole.

 0

 1

 2

 3

 4

 5

0 1200 2400

st
oc

k 
pr

ic
e 

($
)

time (minute)

Stock price over 10 days

-1000

-500

 0

 500

 1000

5th day 10th day

pe
r-

ha
lf-

ho
ur

 r
et

ur
n 

($
)

time

Market-making

-1000

-500

 0

 500

 1000

5th day 10th day

pe
r-

ha
lf-

ho
ur

 r
et

ur
n 

($
)

time

Reverse market-making

-1000

-500

 0

 500

 1000

5th day 10th day

pe
r-

ha
lf-

ho
ur

 r
et

ur
n 

($
)

time

Trend following

-1000

-500

 0

 500

 1000

5th day 10th day

pe
r-

ha
lf-

ho
ur

 r
et

ur
n 

($
)

time

Our method(ω = 1)

-1000

-500

 0

 500

 1000

5th day 10th day

pe
r-

ha
lf-

ho
ur

 r
et

ur
n 

($
)

time

Our method(ω = i2)

-1000

-500

 0

 500

 1000

5th day 10th day

pe
r-

ha
lf-

ho
ur

 r
et

ur
n 

($
)

time

Our method(ω = ei)

Figure 2: The profit/loss during 10 days of each strategy.

Acknowledgments

Here we would like to thank all authors of cited papers to motivate
us to start this project; thanks Prof. Skiena for carefully proofread-
ing and useful comments. For other unacknowledged helpers, our
gratefulness knows no bounds.

References

CHAN, N. T., AND SHELTON, C. 2001. An electronic market-
maker. Tech. rep., 04.

DAS, S., AND DS, S., 2003. Intelligent market-making in artificial
financial markets.

FENG, Y., YU, R., AND STONE, P. 2004. Two stock-trading
agents: Market making and technical analysis. In Volume 3048
of Lecture Notes in Artificial Intelligence, Springer Verlag, 18–
36.

2008. Google Finance. WWW page. http://finance.
google.com/finance.



KEARNS, M., AND ORTIZ, L. 2003. The penn-lehman automated
trading project. IEEE Intelligent Systems 18, 22–31.

KEARNS, M., 2004. WWW: Common stock-traidng strate-
gies. WWW page. http://www.cis.upenn.edu/
˜mkearns/projects/strategies.html.

MOODY, J., AND SAFFELL, M. 2001. Learning to trade via direct
reinforcement. Neural Networks, IEEE Transactions on 12, 4
(Jul), 875–889.

SHERSTOV, E. A., AND STONE, P. 2004. Three automated stock-
trading agents: A comparative study. In AAMAS 2004 Workshop
on Agent Mediated Electronic Commerce VI.

YU, R., AND STONE, P. 2003. Performance analysis of a counter-
intuitive automated stock-trading agent. In ICEC ’03: Proceed-
ings of the 5th international conference on Electronic commerce,
ACM, New York, NY, USA, 40–46.


