
Calling Upon Indicators Efficiently in NinjaScript

RWT-004

2009-08-18

In all of the coding tutorials and examples I've seen, Ninjatrader indicators are used

in-line. So, if you want to know when the SMA is going up, you'd check:

SMA(Close, 5)[0] > SMA(Close, 5)[1]

I find this practice repulsive for two reasons: redundancy and inefficiency. This paper

chronicles the path I took to finding a better way. If you just want to know what the

better way is, skip to the 'Solution' section at the end.

Redundancy

The SMA example above doesn’t look terribly egregious, but I’ve seen examples out

there where the indicator took five or ten arguments! As a result, those arguments are

repeated on every use of the indicator. I wouldn't write it that way just out of laziness!

More importantly, what if this SMA is used twelve times in my code (typical for certain

kinds of indicators), and I later decide I want an EMA, or a different length? Now, I

have to make sure I change every single instance in my code in exactly the same way.

Even with support from the text editor, it is an error-prone position to be in.

For this reason, even the first code I wrote for Ninjatrader stored off the indicators it

used, if they appeared more than once in the algorithm. This way, there was no

redundant specification of the arguments. So, I'd write:

SMA mysma = SMA(Close, 5);

bool goingUp = mysma[0] > mysma[1];

I carried on happily in this fashion for much of our port of EOTPro. In the back of my

mind, I wondered how every indicator magically got a method I could call to create

the associated object. I wasn’t sure I was actually using C#, thinking that Ninjascript

might just be a closely-related DSL. Toward the end of the porting effort, I was forced

to look into it.

Inefficiency

A big problem hit with our EOTBillsArrows indicator. When I applied the initial

version to a chart, my computer ground to a halt, soaked up all the memory, and

http://web.archive.org/web/20100831180146/http:/www.ninjatrader.com/
http://web.archive.org/web/20100831180146/http:/en.wikipedia.org/wiki/Domain-specific_language

became unresponsive. Eventually, the platform would crash. Others in my team also

experienced the problem on much bigger machines. What was going on?

Not having a proper debugger, I did what any programmer would do... I started

commenting stuff out to see if performance got any better. I quickly located the

troubled line:

// This will bring Ninja to its knees!

EOTPattyB patty = EOTPattyB(Input, 3, 13, 6, 1, 1, 18,

 2.5, 3, 3, 2, 2, 8, 11, 5,

 12, 26, 9, 0);

Since the EOTPattyB indicator didn’t stress the computer when applied to the chart, I

knew immediately that I'd have to figure out what magic was being used to create the

indicator object in the offending line.

In every indicator you create in Ninjatrader, a region is added to your code

automatically. It bears the ominous label: "NinjaScript generated code. Neither

change nor remove." Luckily, reading it is not prohibited! Inside, I found a lot of the

details about how the platform creates the illusion of a DSL.

The generated code injects a method into the Indicator base class whose name

matches the indicator name, and whose arguments match your indicator’s inputs. This

method will create a new instance of the indicator and tie it into the calculation

engine. To keep from creating a new instance of the indicator every time you call for

it, the method is memoized.

The problem is in the caching scheme that Ninjatrader uses for momoization. First off,

it's a simple linear search! Let's say you use SMA(Close, 5) in your code, and further

let's say that you have 50 simple moving averages in play across all of your active

indicators and charts. This means that every time you use an SMA, it checks up to 50

instances, one at a time, in this fashion:

if(cacheSMA != null)

 for(int idx = 0; idx < cacheSMA.Length; idx++)

 if(cacheSMA[idx].Period == period &&

 cacheSMA[idx].EqualsInput(input))

 return cacheSMA[idx];

For indicators with n active instances and k inputs, this is an O(nk) algorithm. Granted,

for many indicators, n will be just a handful. Nevertheless, 3 indicators at 20 inputs is

an expected 3/2 * 20 = 30 comparisons per use of the indicator, just to give you the

illusion that you can call up indicators on the fly.

http://web.archive.org/web/20100831180146/http:/en.wikipedia.org/wiki/Memoization

As sad as that is, I knew that couldn't be the whole issue. In the EOTPattyB problem at

hand, there was only one use of the indicator, and even a slow lookup wouldn't

explain the memory leak. Further testing showed that Ninjatrader's generated lookup

code could never match our inputs against its cache, and thus created a new instance

of the indicator on every bar! A chart with 1000 bars would have 1000 EOTPattyB's on

it, and good luck if you set CalculateOnBarClose to false!

I never bothered to try to figure out how their caching code choked on this particular

indicator. It didn't matter, since I can't change their generated code, and I had a better

solution anyway.

Solution

Because of the issues above, I always call upon indicators in Ninjascript in the

following manner: I define a variable in my class to hold the indicator instance. I then

use the OnStartUp() method1 to save off an instance of the needed indicators for use

in OnBarUpdate(). Here's an outline of the approach:

class MyIndicator : Indicator {

 private SMA sma1;

 private SMA sma2;

 ...

 protected void override OnStartup() {

 sma1 = SMA(Close,5);

 sma2 = SMA(Close, 13);

 ...

 }

 void OnBarUpdate() {

 if(sma1[0] > sma2[0]) { ... }

 ...

 }

}

First, note that we still use Ninjatrader's magic generated code, so that we can be

relatively sure that our indicator will still work through version changes. However, we

only use it once, so that our code works even if their caching code is broken. This

workaround also factors out the redundancy by putting the indicator inputs in one

spot.

Richard Todd

http://www.movethemarkets.com

End Notes

http://web.archive.org/web/20100831180146/http:/www.movethemarkets.com/downloads/rwt/rwt004/#FOOTNOTE-1
http://web.archive.org/web/20100831180146/http:/www.movethemarkets.com/

1. OnStartUp() is a Ninjatrader 7 feature. In Ninjatrader 6.5, you can do

the OnStartUp() work at the top of OnBarUpdate(), checking the value of a

boolean to make sure that you only do it once. t's uglier, but it works the same.

Comments

